The PCORI Methodology Report was updated in January 2019. See the updated version of the report at www.pcori.org/Methodology-Report
PCORI METHODOLOGY COMMITTEE

Robin Newhouse, PhD, RN, NEA-BC, FAAN (Chair), Professor and Dean, Indiana University School of Nursing

Steven Goodman, MD, MHS, PhD (Vice Chair), Associate Dean for Clinical and Translational Research, Professor of Medicine & Health Research and Policy, Stanford University School of Medicine

Naomi Aronson, PhD, Executive Director of Clinical Evaluation, Innovation, and Policy, Blue Cross and Blue Shield Association (BCBSA)

Ethan Basch, MD, MSc, Associate Professor of Medicine, Director, Cancer Outcomes Research Program, University of North Carolina-Chapel Hill

Stephanie Chang, MD, MPH, Director, Evidence-based Practice Centers (EPC) Program, Agency for Healthcare Research and Quality (AHRQ)

David Flum, MD, MPH, Professor, Surgery, Health Services & Pharmacy, Associate Chair for Research, Surgery Director, Surgical Outcomes Research Center, University of Washington

Cindy Girman, DrPH, FISPE, President and Sole Proprietor, CERobs Consulting LLC

Mark Helfand, MD, MS, MPH, Director, Evidence-based Medicine, Professor of Medicine, Professor of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University

Michael S. Lauer, MD, Deputy Director for Extramural Research, National Institutes of Health

David O. Meltzer, MD, PhD, Chief of the Section of Hospital Medicine, Director of the Center for Health and the Social Sciences (CHeSS), Chair of the Committee on Clinical and Translational Science, Associate Professor in the Department of Medicine, Department of Economics and the Harris School of Public Policy Studies, University of Chicago

Brian Mittman, PhD, Research Scientist III, Research & Evaluation, Kaiser Permanente

Sally Morton, PhD, Dean, College of Science, Virginia Tech

Neil Powe, MD, MPH, MBA, Constance B. Wofsy Distinguished Professor and Vice-Chair of Medicine, University of California San Francisco, Chief of Medicine, San Francisco General Hospital

Adam Wilcox, PhD, Professor, Department of Biomedical Informatics & Medical Education, Chief Analytics Officer, University of Washington Medicine

SUGGESTED CITATION

PCORI is solely responsible for the final content of this report.
TABLE OF CONTENTS

Executive Summary ... 3

Introduction ... 5

Section I: Patient-Centered Outcomes Research ... 7

Section II: Identifying and Addressing Evidence Gaps in PCOR 12

Section III: PCORI Methodology Standards .. 17
 1: Standards for Formulating Research Questions 19
 2: Standards Associated with Patient Centeredness 21
 3: Standards for Data Integrity and Rigorous Analyses 26
 4: Standards for Preventing and Handling Missing Data 28
 5: Standards for Heterogeneity of Treatment Effects (HTE) 32
 6: Standards for Data Registries .. 35
 7: Standards for Data Networks as Research-Facilitating Structures 40
 8: Standards for Causal Inference Methods 43
 9: Standards for Adaptive and Bayesian Trial Designs 46
 10: Standards for Studies of Medical Tests 48
 11: Standards for Systematic Reviews .. 50
 12: Standards on Research Designs Using Clusters 52

Section IV: Advancing Understanding and Appropriate Use of Methods for PCOR ... 54

Appendix A: PCORI Methodology Standards ... 55
Appendix B: Response to Public Comment ... 67
Appendix C: Translation Framework .. 87
Appendix D: References ... 88
Appendix E: Contributors .. 94
EXECUTIVE SUMMARY

Authorized by the Patient Protection and Affordable Care Act (PPACA) of 2010, the Patient-Centered Outcomes Research Institute (PCORI) was established to help people make better informed healthcare decisions and improve healthcare delivery and outcomes by producing and promoting high-integrity, evidence-based information that comes from research guided by patients, caregivers, and the broader healthcare community. PCORI has developed a program of patient-centered outcomes research (PCOR) that meets this goal by emphasizing scientifically rigorous research that examines choices and clinical outcomes that are meaningful to patients and generates evidence that patients and other stakeholders need to improve health and healthcare outcomes.

The PCORI Methodology Committee provides guidance to the institute in advancing this mission and to the research community more broadly. The committee was established by the PPACA to “develop and improve the science and methods of comparative clinical effectiveness research.” This report summarizes the committee’s work to date in meeting that charge; it is a revised, updated version of the original Methodology Report and Methodology Standards adopted by PCORI’s Board of Governors in 2013.

This report first addresses the need to take a more systematic approach to prioritizing research topics and determining which research designs can provide information that is both useful and timely to patients, caregivers, clinicians, and other healthcare system stakeholders. PCORI has outlined a translation framework as a guide for choosing study designs for specific research questions and considering concerns about the quality of the resulting evidence, appropriate use of scarce research resources, and timeliness of results.

The report then presents the PCORI Methodology Standards. Departures from good research practices are partially responsible for mismatches between the quality and relevance of the information research provides and the information needed to make informed health decisions. The PCORI Methodology Standards help ensure that PCOR studies are designed and conducted to generate the evidence needed to address patients’ and clinicians’ questions about what works best, for whom, and under what circumstances.

These standards do not represent a complete, comprehensive set of all requirements for high-quality PCOR; rather, they address a group of topics that are likely to contribute to improvement in PCOR quality and value. Specifically, the standards focus on selected methodologies and issues that reflect areas where there are either substantial deficiencies or inconsistencies in how available methods are applied in practice or where there is evidence supporting the recommended practices.

The PCORI Methodology Committee developed the standards by following a systematic process. The committee surveyed the range of potential standards, narrowed its scope to those it deemed most important, solicited feedback through a public comment period, revised the draft standards, and confirmed a final set of standards through consensus of its members.

Building on the work of the National Academy of Medicine (formerly the Institute of Medicine [2011]), the committee started with the following definition of a standard:

- A process, action, or procedure for performing PCOR that is deemed essential to producing scientifically valid, transparent, and reproducible results. A standard may be supported by scientific evidence. When such evidence is unavailable, a standard may be endorsed by reasonable expectation that the standard helps to achieve the desired level of quality in PCOR or by broad acceptance of the practice in PCOR. The research practices recommended by the standard can be feasibly implemented.
In 2014, PCORI initiated a process to review and update the 2013 version of the methodology standards. As part of this process, PCORI also convened a panel of methodological experts to provide input that guided the development of a new category of methodology standards: research designs using clusters.

The current set of PCORI Methodology Standards consists of 48 individual standards in 12 categories. The first five categories of the standards are cross-cutting and relevant to most PCOR studies. Researchers should refer to all of these standards when planning and conducting their projects. These categories are the following:

- Formulating research questions
- Patient centeredness
- Data integrity and rigorous analyses
- Preventing and handling missing data
- Heterogeneity of treatment effects (HTE)

The other seven categories of standards are applicable to particular study designs and methods. Two of the categories provide guidance on developing specific types of data and using these data in PCOR studies:

- Data registries
- Data networks as research-facilitating infrastructures

The final five categories of standards apply to studies that have varying designs and purposes. The standards in these categories should be used for guidance when relevant to a particular study:

- Causal inference methods (CI-I applies to all study designs, including randomized trials)
- Adaptive and Bayesian trial designs
- Studies of medical tests
- Systematic reviews
- Research designs using clusters

The PCORI Methodology Standards are listed by category in Section III of this report. The full text of the standards can also be found in Appendix A: PCORI Methodology Standards. PCORI uses the standards in its review of funding applications, monitoring of research awards, and peer review of final research reports submitted by investigators.

This updated set of PCORI Methodology Standards improves the foundation for ensuring best PCOR practices. Given that future advances in research methodology are expected, PCORI has a commitment to continue to evaluate and update the guidance that it provides to the research community.
Authorized by the Patient Protection and Affordable Care Act of 2010, the Patient-Centered Outcomes Research Institute (PCORI) was established to help people make informed healthcare decisions and improve healthcare delivery and outcomes by producing comparative clinical effectiveness research that is guided by patients, caregivers, and the broader healthcare community. According to the National Academy of Medicine (formerly the Institute of Medicine), comparative clinical effectiveness research (CER) “compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care” (Institute of Medicine 2009). PCORI has developed a program of patient-centered outcomes research (PCOR) that meets this goal by emphasizing scientifically rigorous research that examines choices and clinical outcomes that are meaningful to patients and generates evidence that patients and other stakeholders need to improve health and healthcare outcomes.

The federal legislation that authorized PCORI required that its research program be based on rigorous scientific methods. Specifically, PCORI was directed to pursue two early activities that would help to support its scientific mission. The first was to develop methodology standards that “provide specific criteria for internal validity, generalizability, feasibility, and timeliness of research and for health outcomes measures, risk adjustment, and other relevant aspects of research and assessment with respect to the design of research.” The second was to create a translation table that would provide guidance to “determine research methods that are most likely to address each specific research question.” PCORI completed its initial work on these requirements in 2013 and released the first edition of this report at that time.

PCORI developed an initial set of methodology standards designed to improve the conduct of PCOR (PCORI Methodology Committee 2013). In 2014, PCORI began a process to review and update its existing set of methodology standards. As part of this process, PCORI also convened a panel of methodological experts to provide input that guided the development of a new category of methodology standards on research designs using clusters. These new standards, along with revisions to the existing standards, were posted for public comment in the first half of 2016. The new and updated standards are listed in Section III of this report, which provides the rationale for each set of standards and additional discussion about the methodological issues that the standards are intended to address.

This report also addresses the need to take a more systematic approach to prioritizing research topics and determining which research designs can provide information that is both useful and timely to patients, caregivers, clinicians, and other healthcare system stakeholders. The translation framework, which is included in Section II, outlines key considerations and decision points in the PCOR research process.
To illustrate the importance of the issues addressed in this report, we have included four sets of stories and examples, each with a different focus. Although these stories and examples are not intended to describe specific standards or to endorse particular research approaches, they demonstrate the importance of using appropriate methods to ensure the validity, trustworthiness, and usefulness of findings generated by PCOR.

PATIENT VOICES
Focus on patients who share their experiences in navigating choices and weighing options.

RESEARCH STORIES
Focus on published research studies that demonstrate the importance of good methodology for producing valid and useful research results.

CER WINS
Focus on comparative clinical effectiveness research (CER) that led to important changes in clinical practice and patient care.

RESEARCH IN PRACTICE
Focuses on the value and challenges of implementing CER studies.
SECTION I: PATIENT-CENTERED OUTCOMES RESEARCH

The availability of multiple options for prevention, diagnosis, and treatment in health care presents a significant challenge to patients and clinicians trying to make informed health decisions. Deciding between options in health care requires an understanding of how to balance the benefits and risks of each treatment option and an understanding of how each option might apply differently to individual patients, given their unique personal characteristics. The information needed to make these decisions most often comes from clinical research.

A program of clinical research should provide high-quality, relevant, and useful health-related evidence for decision makers, especially patients, caregivers, and healthcare providers. Patient-centered outcomes research (PCOR) focuses on providing information that can help in addressing such patient-centered questions as the following:

- Given my personal characteristics, conditions, and preferences, what should I expect will happen to me?
- What are my options, and what are their potential benefits and harms?
- What can I do to improve the outcomes that are most important to me?
- How can clinicians and the care-delivery organizations they work in help me make the best decisions about my health and health care? (Examples of how healthcare delivery systems have participated in comparative research can be found in CER Wins: Two Studies of Improving Care in Hospitals.)

Frequently, however, there is a gap between the information that people need for informed health decisions and the information available from research. This gap sometimes results from how research questions are selected, how studies are designed, and how results are disseminated. Researchers often choose questions and outcomes that they consider to be interesting and important; however, sometimes these are not the questions and outcomes that are most relevant to people who need information. Researchers may be less inclined to focus on outcomes that are difficult to obtain, expensive, or take too much time to assess. (For an example where choice of outcome made a difference, see CER Wins: A Surprise Finding That Led to Immediate Changes in Treatment for Abnormal Heart Rhythms.)

Often, research is conducted with individuals who represent only a limited range of characteristics, such as age, sex, race, and complexity of conditions. Some research also may be restricted to treatment in sophisticated research centers rather than typical community settings. Practical reasons may influence these choices: it takes a much larger study to account for differences among patients, and the bigger the study, the greater the cost. Conducting research in multiple settings or community settings where research is less common takes more work. Sometimes researchers want to include a broader range of patients and settings but are unable to do so because they have trouble either recruiting study participants who represent the full spectrum of patients or managing the logistics of multiple sites. (To learn about two trials using broader inclusion criteria, see CER Wins: The Value of Including Greater Varieties of Patients in Studies.)

Moreover, comprehensive reviews of research have shown that many studies address questions that have already been answered, fail to address questions that are widely known to be important, or use study designs that render the results useless for decision makers (Chalmers and Glaziou 2009; MacLeod et al. 2014). Failure to conduct fair “head-to-head” comparisons of alternative treatments (Evans et al. 2011), employ appropriate methods (Yordanov et al. 2015), and ensure full publication of study results (Glaziou et al. 2014), including negative and null findings, represent significant sources of “avoidable waste” in research and contribute to the persistence of evidence gaps (Chalmers and Glaziou 2009).
What Strategies Help Hospitals Avoid Infections?
Too often, patients get infections while in the hospital, and such hospital-acquired infections can be deadly: each year, 17,000 hospital patients die from hospital-acquired infections. In 2004, for example, 1,000 patients developed serious infections in Michigan hospitals. The rate was similar in other states. But such infections are often preventable.

A major source of the infections are thin tubes, called central line catheters, inserted into large veins. In the Keystone Intensive Care Units (ICU) project, most Michigan hospitals participated in a large, prospective, observational study that examined a new process for preventing hospital-acquired infections. Teams of doctors and nurses followed a series of simple steps for inserting and removing catheters from large veins. The hospitals reminded staff to follow the steps, provided real-time feedback, and implemented other changes (Goeschel and Pronovost 2008) to make safety for patients everyone’s job. The team compared Michigan hospitals, which made the changes, with hospitals in nearby states that did not. After two years, among patients 65 years or older, there were no catheter-associated infections in the ICUs at most of the Michigan hospitals, and the Michigan patients had lower death rates than similar patients at the other hospitals (Lipitz-Snyderman et al. 2011; Pronovost et al. 2006).

What This Study Adds: This large study showed the value of a hospital procedure as it was performed throughout many different types of hospitals in Michigan. Therefore, the results will probably apply to communities of patients who seek care in various settings.

Minutes Count: Does a Delay in Treatment Matter for Heart Attack Patients?
During a heart attack, the time it takes to get the patient treatment can matter a great deal. For some patients, delays can lead to serious heart problems and even death.

For certain heart attacks, the best treatment is called angioplasty, a procedure that unblocks a crucial blood vessel. Specialized cardiologists thread a balloon-like device through the patient’s blood vessel, then inflate it. Some hospitals are not equipped for this, so patients who need angioplasty are often transferred to hospitals that offer the procedure.

Randomized controlled trials have compared patients who were moved and received angioplasty with those treated in other ways at the original hospital. When there were no delays, the transferred patients fared better. Rapid transfer, however, isn’t always feasible.

How long a delay is too long for a patient to benefit from angioplasty? A recent observational study used large registries of data on patients to answer this question. The study compared ST Elevation Myocardial Infarction patients who were transferred to hospitals that could perform angioplasty versus those who were treated with fibrinolytic (drug) therapy at the first hospital. The results demonstrated that delays to reperfusion are common among patients transferred for primary treatment and that the mortality advantage for transfer declines as treatment delays lengthen. When the delay was two hours (120 minutes) or longer—which was true for 48 percent of patients in the community—angioplasty offered no benefit over drugs. The benefit of angioplasty occurred in those patients transferred rapidly to angioplasty-capable hospitals (Pinto et al. 2011).

What This Study Adds: By studying a larger, less highly selected group of patients and hospitals, this study expanded the clinical trial results, making clear when a patient who is having a heart attack can benefit from being transferred to another hospital for angioplasty and when it is just as good to get immediate treatment with fibrinolytic therapy. The study also shows that registries—particularly when combined with sophisticated analytic techniques—can play a key role in informing clinical decisions.
PCORI is committed to addressing these challenges and supporting high-quality PCOR. The PCORI Methodology Standards have been developed to address specific criticisms and weaknesses of clinical research. These standards establish expectations about the characteristics of high-quality PCOR, specifying a set of requirements for scientifically valid, transparent, and reproducible research. Consistent with the objectives of these standards, PCORI is committed to the principles of open science, which is broadly defined as efforts to increase meaningful public and professional access to the results and data from research. Improving transparency, access, and utility of data from clinical research can facilitate the reproduction of original analyses (allowing other researchers to verify the findings) as well as the conduct of additional analyses (improving research efficiency and the responsible use of limited research resources). PCORI believes that for evidence to be useful, it must be relevant and readily available to people making decisions (see Research in Practice: Chest Pain Choices), and PCORI supports efforts to improve public access to study reports for all relevant stakeholders.

CER WINS

A Surprise Finding that Led to Immediate Changes in Treatment for Abnormal Heart Rhythms

Patients who survive a heart attack may not be out of danger. In the months after the attack, their lives can be threatened by abnormal heart rhythms. In 1987, researchers examined how well three medicines worked to prevent abnormal heart rhythms. The trial enrolled adults who had suffered a heart attack within the previous two years and later experienced abnormal rhythms. The study tallied heart attacks and deaths for 10 to 18 months. The researchers compared the effects of the medicines and an inactive substance. They found that the drugs did suppress abnormal heart rhythms—but the researchers got a surprise. All three medicines were associated with a higher death rate than the inactive substance. After this finding was reported, physicians stopped prescribing the medicines to heart patients (CAST-II Investigators 1992; Echt et al. 1991).

What This Study Adds: Before this study, it was taken for granted that the drugs would reduce death rates, because they were shown to reduce some abnormal rhythms. The medicines were widely prescribed but had not been compared directly. The surprise finding was discovered because the trial measured patient-relevant clinical outcomes (death rates), whereas previous studies looked only at intermediate outcomes (heart rhythm). The trial led to an immediate and lasting change in treatment for patients who had previously had a heart attack.
The Value of Including Greater Varieties of Patients in Studies

Some randomized trials of medical treatments use strict eligibility criteria to select people who are similar to one another: all of the participants receive the treatment in the same way in settings that are alike. These similarities make it easier for researchers to show that differences in results come from the treatment being tested rather than other factors. But such carefully controlled trials may not show how a treatment will affect a wide variety of patients in a range of settings.

Randomized trials using broad populations, diverse settings, and “simple” eligibility criteria can provide strong results that change medical practice.

Drug Reduces Heart Attack Deaths
One of the first “large simple trials,” called the First International Study of Infarct Survival (ISIS-1) enrolled 16,000 people in 14 countries. Each person had experienced symptoms of a heart attack and had gone to a hospital. Within a few hours, the participants were randomly assigned to one of two groups. One group received standard treatment, which at that time did not include drugs called beta blockers. The participants in the other group had a beta blocker infused into their veins and later took the drug by mouth. Patients treated with the beta blocker had a 15 percent lower death rate in the first week of the study compared with a control group. No significant difference in mortality was noted between the groups after the first week (ISIS-1 1986).

What This Study Adds: This study showed that beta blockers are an effective therapy for nearly all groups of patients who may be having a heart attack. The study changed the way heart attack patients are treated.

Screening for Abdominal Aneurysm
The aorta, the largest blood vessel in the body, sometimes balloons into what is called an abdominal aneurysm. If this aneurysm ruptures, the internal bleeding can lead to death. A screening with ultrasound can identify an abdominal aneurysm before any symptoms appear. Would such screening of a large group of people be worthwhile? A British trial randomly assigned 68,000 men between ages 65 and 74 to receive—or not receive—an invitation for a screening ultrasound. Over the next seven years, the study found that the men invited to the initial screening had about half as many deaths due to an abdominal aneurysm as those not invited for screening (Kim et al. 2007).

What This Study Adds: By keeping the criteria for entering the study broad and conducting it in the setting of normal clinic practice, investigators strengthened the evidence that the intervention is effective.
Soon after Annie LeBlanc; her husband, Michel Demers; and their children moved from Canada to the United States, Michel began experiencing chest pain. They share their story along with Erik Hess, MD, MS, of the Mayo Clinic and leader of the PCORI-funded Chest Pain Choice study (Hess et al. 2012).

Annie LeBlanc: A few months back, my husband wasn’t feeling well at all. He was experiencing chest pain. His father and grandfather had died suddenly of a heart attack, so he was very concerned about this condition. He phoned me at work. We were new in town, and we didn’t have many family or friends at the time. We rushed home to find a babysitter for the kids. Then we rushed to the ER. They got so many tests very quickly, but then they came back to us saying that “everything seems to be normal.” Still, they wanted to run more tests. We stayed for another two hours. More blood tests, EKG, and chest X-rays.

Michel Demers: We were very worried about what was happening.

LeBlanc: All this time, to be honest, we wanted to get back to the kids. The doctors came back to us saying that everything was all right, but they didn’t want to take any chances, so they wanted to admit him for a stress test in the morning. But I was aware of the choices we had. So, I started to ask questions. Instead of options and choices, we got comments such as, “You don’t want your husband to be alright?” and “We’re pretty sure this is nothing bad, but if this was my brother, I wouldn’t let him go home.”

I asked the doctor, “What is the risk of heart attack in the next month?” “It’s low.” “How low?” “Low, but we still want to make sure.”

My husband felt worse because he didn’t understand and couldn’t express himself (he speaks French primarily). Finally, we saw someone who could explain the risk. He knew the results of the clinical comparison studies that showed the difference between staying and going home. He said, “Okay, here are your choices. Your risk is very low. I can keep you under observation and have the stress test in the morning. I can have you seen by a cardiologist within 48 hours. Or you can go to your primary care provider for follow-up.”

We didn’t have a primary care provider at the time. We chose to follow up with the cardiologist. That was what we wanted and that was what happened. In the end, everything was fine. No stress test done, even as an outpatient. Now we are part of the research team looking at shared decision making in chest pain. What we did at the beginning really was to tell our story. As the researchers think about guiding patients through the experience of making decisions about chest pain, we make sure that it matches what we were experiencing. It was our journey. And they needed to understand it. We were part of every part of every step of the research process. We provided input on the decision aid. We pointed out what was missing and how it was to be distributed, and then what we were expecting in terms of outcomes that meant something to us. It’s amazing. Every time we meet, our experience shapes the way the protocol or intervention is being used.

Erik Hess: One of the things that I was surprised by, as a provider and researcher, is that if we treat low-risk patients automatically the same as the moderate-risk patients, the patients perceive their risk as moderate. Good evidence allows us to communicate the risk in a much clearer way, and then we can mitigate their anxiety by including them in the decision-making process.
SECTION II: IDENTIFYING AND ADDRESSING EVIDENCE GAPS IN PCOR

Establishing a specific research agenda is a core duty of PCORI. Unless there is a good match between research priorities and the information needs of patients and clinicians, methodological standards will have limited effect. PCORI research should be directed toward providing the answers patients, clinicians, and other stakeholders need for health decisions.

Identifying and Prioritizing Research Questions
PCORI’s Board of Governors is charged with developing, refining, prioritizing, and selecting among research investments. To guide this process, PCORI uses a framework that includes the following factors:

- Disease incidence, prevalence, and burden (with emphasis on chronic conditions)
- Gaps in evidence in terms of clinical outcomes, practice variation, and health disparities
- Potential for new evidence to improve health, well-being, and the quality of care
- Effect of health conditions and treatments on national expenditures
- Patient needs, outcomes, and preferences
- Relevance to patients and clinicians in making informed health decisions

PCORI has an obligation to spend its resources effectively and efficiently. When there is more than one acceptable research approach available, the advantages and disadvantages of alternative study designs should be considered, including the potential value and timeliness of the likely research results. Techniques such as value-of-information analysis—a statistical method for estimating the average improvement in outcomes that may be expected by obtaining additional information (Meltzer et al. 2011; Claxton and Sculpher 2006)—may be useful in clarifying tradeoffs between study cost and the degree of certainty expected from study results (see Research in Practice: Analyzing the Value of Information). However, such tools cannot replace reasoned judgment and transparent discussions between decision makers and relevant stakeholders in determining the level of evidence needed to support informed health decisions and how best to generate it.

PCORI must consider a sufficient number and range of topics before it selects topics for research funding. Including patients and other stakeholders can help to better align new research topics with the information needs of patients, clinicians, and other healthcare stakeholders (Sheridan et al. 2017). Empirical evaluations of engagement in research increasingly suggest that the involvement of patients and other stakeholders can improve the relevance of research questions and usefulness of results for health decision making (Dudley et al. 2015; Esmail, Moore, and Rein 2015; Forsythe et al. 2016). PCORI is therefore exploring novel and existing approaches to obtaining patient and other stakeholder input in research topic generation (see Research in Practice: PCORI Prioritization Pilot). PCORI is also systematically evaluating the impact of patient and other stakeholder engagement on the research it funds to identify best practices for engagement in PCOR studies (Frank, Basch, and Selby 2015).

Systematic Reviews
Research funders have an ethical obligation to avoid involving patients in unnecessary studies. A study is needed if it addresses an important question that has not been answered by previous research—namely, if it addresses an “evidence gap.” Systematic reviews, which critique and synthesize the existing literature, can identify gaps in knowledge that underlie uncertainty among patients and clinicians. Systematic reviews can also highlight key questions that have not been answered by prior studies. Identifying gaps in the existing literature and deficiencies in completed studies can
In choosing what research to fund, PCORI must balance the cost of a project against the potential usefulness of the information it can produce. Value-of-information (VOI) analysis is a tool for making such choices. A recent study looked into whether VOI analysis would be useful in a process in which healthcare stakeholders help decide which research to fund (Carlson et al. 2013). In this study, the researchers worked with stakeholders who were advising a group that funds trials of cancer treatments. Josh Carlson, MPH, PhD, is an assistant professor at the University of Washington and an affiliate faculty member at the Fred Hutchinson Cancer Research Center, both in Seattle.

How did you explain VOI to the stakeholders in your study?

Josh Carlson: We prepared an educational document on VOI. It was only three pages long. We tried to use simple language to describe VOI. We also gave presentations based on that document and allowed the stakeholders to ask questions and interact with us.

In the educational document, did you use an example to illustrate the concept?

Carlson: One example we used was a drug prescribed for advanced breast cancer. It was approved based on data from a single phase II trial that showed that the drug had an effect on the cancer but did not show that it increased quality or length of life. The Food and Drug Administration approved the drug, but doctors and policy makers were unsure whether they should offer the drug to patients now or wait for additional evidence, given the remaining uncertainty.

What did your study show?

Carlson: In our study, we asked 13 stakeholders to rank three potential cancer genomic research areas. They indicated their preferences both before and after receiving VOI information. The VOI information appeared to influence stakeholder rankings, with seven changing their ranking. Further, most of the stakeholders reported that they had found the analysis useful in their decision making.

How do you see VOI analysis being integrated into deciding what healthcare research to fund?

Carlson: VOI analysis is useful in that it can help people compare across a range of technologies but can best serve as one factor among multiple decision-making criteria. I think it works best within specific research areas. It gets a bit harder when you ask people to decide between completely different research programs. Ultimately, the goal is to help maximize the impact of research.

reduce investments in research that are unlikely to help answer important questions.

Peer and Stakeholder Review of Research Proposals

Despite its central role in scientific discourse and decision making, peer review of research proposals has had little attention as a subject of research; most peer-review practices are maintained by convention (Kotchen and Spellecy 2012). At PCORI, research proposals are reviewed by scientists, patients, and other healthcare stakeholders. PCORI has chosen to involve patients and other stakeholders in the review process because of the central importance of patient centeredness (Fleurence et al. 2014). (see Patient Voices: PCORI Reviewers).

To protect the integrity and independence of the review process, PCORI has sought to adhere to strict standards for avoiding conflicts of interest. Research proposals are also assessed for adherence to PCORI's Methodology Standards to ensure that the research selected for funding is designed to generate the high-quality and relevant evidence needed to inform health decisions.
In 2012, through an open, Internet-based call for statements of interest, PCORI selected 33 volunteers to participate in a research-prioritization pilot study. The participants included 16 researchers and 11 people who were patients, patient advocates, caregivers, or individuals from patient/caregiver advocacy organizations. The other six participants were stakeholders such as clinicians, consumers, industry representatives, payer representatives, or policy makers. Dr. Rachael Fleurence, former director of PCORI’s CER Methods and Infrastructure program, stresses the importance of the patient perspective in the prioritization process: “If PCORI funds the study, the result of the research should allow patients to have information that matters to them and is actionable. By including patients and other stakeholders in the prioritization process, we probably will obtain a different set of topics.”

The participants ranked 10 topics using a point system. They were asked to base this ranking on the following criteria: 1) patient centeredness, 2) impact, 3) differences in benefits and harms, 4) reduction in uncertainty, 5) implementation in practice, 6) duration of information, 7) healthcare system performance, and 8) inclusiveness of different populations. “The pilot gave us a lot of information about how to improve our multi-stakeholder prioritization process,” Fleurence says. “For example, eight is a lot of criteria, and pilot participants wanted to know if there was a way to streamline them.” As a result, PCORI collapsed the prioritization criteria from eight to five: 1) patient centeredness, 2) impact on population and individual health, 3) differences in benefits and harm, and reduction in uncertainty, 4) implementation in practice, and 5) duration of information.

On April 19 and 20, 2013, PCORI convened its first advisory panel meetings. Each of three stakeholder panels used the revised prioritization process to review between 10 and 25 topics to advise PCORI on key areas of research for the development of funding announcements. Fleurence concludes, “From the pilot, we saw that the process worked, and we knew that the process would work for the advisory panels.”
The whole purpose of doing patient-centered research is to benefit patients, and part of that is that we need participation from all people affected by health care so, part of that is going through technical documents and reviewing proposals and learning about research and science. But that's accessible to anyone. I don't think you need technical expertise, just intelligence and integrity and the willingness to review the applications.”

— Caroline Leopold

"[The] PCORI funding process was more streamlined. I was intimidated being side-by-side with scientific stakeholders, but I also felt like my input was valuable to the panel. Everyone on the panel wanted to hear my thoughts, and they appreciated what the patients were bringing to the panel because our experiences are so different than a scientist's. ... I found it to be a rewarding experience because I learned things from the other stakeholders, and I know that they learned things from me as a patient.”

— Crystal Brown Tatum
Advances in research methodology should also be considered. Over the past 20 years, choice of study design has been debated intensely in scientific venues. Some assert that randomized designs are more relevant than observational studies to decision makers, but well-designed observational studies have also demonstrated value individually or as a complement to randomized designs, helping to determine under what circumstances and to which patients the findings from randomized controlled trials (RCTs) apply. Observational studies also may uncover rare events (often harms) that were not observed in RCTs. The use of observational studies to make causal inference is potentially much stronger than it has been in the past (Institute of Medicine 2012, 2013).

The selection of either a randomized or observational study is only a starting point, however. The choice of data source(s) and analytical methods also affects the strength and quality of evidence generated by a study (Institute of Medicine 2012). Important considerations include, for example, whether the nature of the study question requires that specific information be newly collected, or whether information from previously collected data will suffice. If data have been previously collected, several factors should be considered, including availability of clinical detail, data completeness, access to the data, confidentiality, and ability to link multiple data sources. Analytical methods should be selected to address issues of bias and confounding that could result in a study producing invalid estimates of the benefits and risks of an intervention.

The translation framework provides the foundation for an approach to identify, assess, and summarize issues in the design and analysis of PCOR studies, including those raised by patients and other stakeholders. A core tenet of PCOR is that the perspectives of patients and other stakeholders can inform scientific reasoning about the research hypothesis and research question(s), elements of study design and conduct, and outcome selection and measurement; these perspectives also help to ensure that studies provide answers to real-life “decisional dilemmas” and improve health outcomes. Regardless of the source, input from stakeholders must be examined for its scientific validity and potential to strengthen the research. The translation framework is therefore intended to foster discussion among researchers, patients, clinicians, and stakeholders in determining which research designs and methods could provide valid and useful information to fill today’s clinical evidence gaps.

Examples of Study Characteristics

<table>
<thead>
<tr>
<th>Intrinsic Study Characteristics</th>
<th>Extrinsic Study Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Internal validity: the extent to which effects are caused by the intervention or exposure</td>
<td>• Timeliness: rapidly changing technology, policy, or public health needs</td>
</tr>
<tr>
<td>• External validity: generalizability or applicability to non-study settings and populations</td>
<td>• Logistical constraints: feasibility of collecting information from participants, number of participants available, study complexity</td>
</tr>
<tr>
<td>• Precision: having small random error of estimation</td>
<td></td>
</tr>
<tr>
<td>• Heterogeneity in risk or benefit: risks or benefits vary by subgroup</td>
<td></td>
</tr>
<tr>
<td>• Ethical dimensions of the study: including considerations of risk–benefit balance and study burden for study participants</td>
<td></td>
</tr>
</tbody>
</table>
SECTION III: PCORI METHODOLOGY STANDARDS

Introduction
Because patient-centered outcomes research (PCOR) can include a variety of research designs and specific techniques, PCORI's Methodology Standards do not attempt to address all possible issues in clinical research. Rather, the topics for the standards were chosen to reflect areas where there were either 1) substantial deficiencies or inconsistencies in how available methods were applied in practice, despite specialized knowledge about how best to conduct research; or 2) threats to the validity of research results that diminish the value and potential use of those results (Helfand et al. 2011; Lohr 2007; Schneeweiss, Seeger, and Smith 2012).

Background
After following a structured process to obtain input from scientific experts and the solicitation of public comments, PCORI's Board of Governors endorsed an initial set of standards that was released to the public in December 2012. Details on the standards development process were provided in the first edition of this report (PCORI Methodology Report 2013).

In 2014, the PCORI Methodology Committee reviewed the original standards to identify areas of emerging methodological advances as well as gaps in the current standards to prioritize development of additional standards that could be helpful to PCORI's evolving research portfolio. As a result, a new set of standards was created to guide research designs using clusters. Committee members nominated a panel of experts on cluster designs, PCORI staff compiled existing guidance on these designs, and draft standards were developed. In April 2015, PCORI held a meeting with expert methodological consultants to review and revise the draft standards, resulting in new proposed standards for research designs using clusters.

In 2015, the Methodology Committee also undertook a systematic process to review, revise, and update the original 47 PCORI Methodology Standards. Workgroups of Methodology Committee members and PCORI staff were formed for each of the original 11 categories of standards. Each workgroup evaluated the methodological literature for new developments and also reviewed feedback from researchers who had used and applied the standards. Outside consultants were engaged as needed. Through a consensus process, each workgroup proposed updates and other changes to the standards. In several cases, existing standards were merged, thereby reducing the total number of standards. In October 2015, the full committee reviewed all proposed changes to the standards and made changes to the workgroup proposals when warranted. The revised standards were posted on the PCORI website, and public comments were solicited between February and April 2016. Following the public comment period, the Methodology Committee made further revisions to the revised standards. (The table in Appendix B summarizes the response to public comments.) The current PCORI Methodology Standards, which are discussed in this report, consist of 48 individual standards in 12 categories (see Appendix A: PCORI Methodology Standards.)

Overall Rationale
PCORI's efforts to establish methodological standards for PCOR are a logical extension of other efforts to improve research methodology. Over the past four decades, explicit, formal standards for planning, conducting, and reporting clinical trials were developed for the subset of research studies that are conducted to obtain regulatory approval from the US Food and Drug Administration (US Food and Drug Administration 2010 a, b). These standards, articulated in formal “guidance documents,” helped to create a level playing field for companies designing such studies and for regulatory decision makers. PCORI's Methodology Standards are not intended to replace the FDA guidance documents, nor has PCORI requested that FDA adopt its standards. Rather, PCORI's Methodology Standards are meant to provide guidance to
the broad community of researchers who conduct PCOR.

The PCORI Methodology Standards specifically address the design and conduct of PCOR studies, distinguishing them from ongoing efforts in the past decades to develop standards that address only the reporting of results after studies are completed. Reporting standards for different study designs are currently housed at the Equator network website, which includes widely utilized tools such as CONSORT (for randomized clinical trials), STROBE (for observational studies), and STARD (for diagnostic accuracy studies).

In 2008, the National Academy of Medicine (NAM), formerly the Institute of Medicine, stated that methodological standards for the conduct of one type of research—systematic reviews—would help decision makers “with respect to transparency, minimizing bias and conflict of interest, and clarity of reporting” (Institute of Medicine 2008). In 2011, NAM published standards for conducting systematic reviews (Institute of Medicine 2011). The PCORI Methodology Standards expand this effort by formulating criteria for comparative clinical effectiveness research such as randomized trials, observational studies, and studies of medical tests.

As a group, the PCORI Methodology Standards offer an approach to ensuring that PCOR studies are designed and conducted to generate the evidence needed to address patients’ and clinicians’ questions about what works best, for whom, and under what circumstances. Methodological standards can improve the way research questions are selected and formulated, how studies are designed to address these questions, and how findings are reported. Standards can also help prevent the use of flawed methods and provide a common set of expectations about the characteristics of high-quality PCOR.

The first five categories of the PCORI Methodology standards are cross-cutting and relevant to most PCOR studies. Researchers should refer to all of these standards when planning and conducting their research projects. These categories are the following:

- Formulating research questions
- Patient centeredness
- Data integrity and rigorous analyses
- Preventing and handling missing data
- Heterogeneity of treatment effects (HTE)

The other seven categories of standards apply to particular study designs and methods. Two of the categories provide guidance on developing specific types of data and using these data in PCOR studies:

- Data registries
- Data networks as research-facilitating structures

The final five categories of standards apply to studies that have varying designs and purposes. The standards in these categories should be used for guidance when relevant to a particular study:

- Causal inference methods (CI-I applies to all study designs, including randomized trials)
- Adaptive and Bayesian trial designs
- Studies of medical tests
- Systematic reviews
- Research designs using clusters

These standards should be considered minimal standards, meaning that they are necessary for sound science but should not discourage use of more sophisticated approaches and/or inhibit further evolution of methods. Some standards are designed to promote transparency: how to communicate properly, both in study protocols and in published reports, exactly what was planned and what was done. All of the standards are based on current scientific knowledge; some standards are based on theoretical work and/or simulations when evidence from empirical studies was not available.

In the following sections, the standards are grouped by category. The sections include the full text of all standards at the beginning of each section, followed by a brief summary of the rationale for the standards, key definitions, and additional discussion about the methodological issues. References to the applicable standard are included in parentheses—for example, (RQ-1).
1: STANDARDS FOR FORMULATING RESEARCH QUESTIONS

RQ-1: Identify gaps in evidence.
Gaps in the evidence identified in current systematic reviews should be used to support the need for a proposed study. If a systematic review is not available, one should be performed using accepted standards in the field (see SR-1), or a strong rationale should be presented for proceeding without a systematic review. If the proposed evidence gap is not based on a systematic review, the methods used to review the literature should be explained and justified.

RQ-2: Develop a formal study protocol.
Researchers should develop a formal protocol that provides the plan for conducting the research. The protocol should specify the research objectives, study design, exposures and outcomes, and analytical methods in sufficient detail to support appropriate interpretation and reporting of results. Protocols should be submitted to the appropriate registry (e.g., clinicaltrials.gov), and all amendments and modifications (e.g., changes in analytic strategy, changes in outcomes) should be documented.

RQ-3: Identify specific populations and health decision(s) affected by the research.
To produce information that is meaningful and useful to people when making specific health decisions, research proposals and protocols should describe (1) the specific health decision the research is intended to inform, (2) the specific population(s) for whom the health decision is pertinent, and (3) how study results will inform the health decision.

RQ-4: Identify and assess participant subgroups.
In designing studies, researchers should identify participant subgroups, explain why they are of interest, and specify whether subgroups will be used to test a hypothesis or for exploratory analysis, preferably based on prior data. A study should have adequate precision and power if conclusions specific to these subgroups will be reported.

RQ-5: Select appropriate interventions and comparators.
The interventions and comparators should correspond to the actual healthcare options for patients, providers, and caregivers who would face the healthcare decision. The decision should be of critical importance to the relevant decision makers, and one for which there is a compelling need for additional evidence about the benefits and harms associated with the different options. Researchers should fully describe what the comparators are and why they were selected, describing how the chosen comparators represent appropriate interventions in the context of the relevant causal model (CI-1), reduce the potential for biases, and allow direct comparisons. Generally, usual care or nonuse comparator groups should be avoided unless these represent legitimate and coherent clinical options.

RQ-6: Measure outcomes that people representing the population of interest notice and care about.
Identify and include outcomes the population of interest notices and cares about (e.g., survival, functioning, symptoms, health-related quality of life) and that inform an identified health decision. Define outcomes clearly, especially for complex conditions or outcomes that may not have established clinical criteria. Provide information that supports the selection of outcomes as meeting the criteria of “patient centered” and “relevant to decision makers,” such as patient and decision-maker input from meetings, surveys, or published studies. Select outcomes that reflect both beneficial and harmful effects, based on input from patient informants and people representative of the population of interest.

Rationale for These Standards
A primary objective of PCOR is to enable patients and those who care for them to make better informed decisions by generating strong and high-quality evidence about the risks and benefits of their available healthcare options. As with other approaches to clinical research, PCOR involves four broad phases, or categories, of scientific activities:

- Formulation of the research question (“What should we study?”)
- Selection of the study approach (“What study design(s) should we use?”)
- Execution of the study (“How do we conduct, govern, and analyze the study?”)
- Dissemination and implementation of findings (“How do we enable people to apply the study results?”)
Many of the PCORI Methodology Standards focus on the early phases of research, because all high-quality, useful research begins with good planning. For PCOR, these planning steps are necessary to ensure that the research will be relevant to healthcare decisions, that recruitment strategies will achieve the participant numbers required for scientific rigor, and that the protocol makes clear how the research will accomplish its objectives. These (and other) standards specify what to include in research protocols as a means of improving the quality of the study and the transparency of the research process. Higher quality and more transparent research should result in a better understanding of the applicability of study results to specific patients and situations.

Getting the questions right ("What should we study?") is an important starting point. The Standards for Formulating Research Questions provide guidance in determining whether additional research is needed to support informed health decisions and how to ensure that studies are designed to generate the necessary information.

The need for a new study must be rigorously justified. To make optimal use of resources available for research, study questions should not be redundant or irrelevant to healthcare practice and decisions. Proposed research projects should address gaps in knowledge about treatments or services, including gaps in understanding what works in populations that differ from those that have been studied (e.g., studies in different age or socioeconomic groups). Research imposes risk on participants (even secondary analyses of data can present risks, such as the disclosure of sensitive information), and the imposition of these risks cannot be justified if the research will not provide evidence to improve health decisions.

Careful, thorough consideration of previous and continuing studies can help prevent wasted investments in research (Ioannidis et al. 2014). Systematic reviews play a critical role in the justification of research, supporting a structured approach to assessing not just whether there is a lack of evidence but whether that lack of evidence demonstrably hinders the ability of patients, caregivers, and providers to make an informed decision about their health and health care (Chalmers et al. 2014). If a systematic review is not available—and if conducting one may not be useful or the best use of resources—researchers should describe and justify the approach employed to identify the evidence gap, including any departures from relevant standards for conducting and reporting systematic reviews (see Standards for Systematic Reviews) (RQ-1).

Once the need for new research is established, a formal study protocol should be developed, providing a comprehensive plan for the design, conduct, and analysis of the study (RQ-2). Formal protocols make the study intentions clear to all users, provide the information needed to evaluate the quality and applicability of the research, and help to ensure that spurious results are not reached as a result of multiple post hoc analyses.

The research question and study protocol should clearly describe the following components (often abbreviated as PICOTS), which are captured in RQ-3 through RQ-6:

- **Population** of patients/research participants and relevant subgroups of patients
- **Intervention(s)** relevant to patients in the target population
- **Comparator(s)** relevant to patients in the target population
- **Outcomes** that are meaningful to patients in the target population, including the
 - **Timing** of outcomes and length of follow-up
 - **Settings** in which the intervention is delivered, including those of the healthcare providers

Describing who is included (and excluded) in the study population is essential for understanding to which patients and in what circumstances the results will apply as well as for ensuring the reproducibility of study findings (RQ-3). Many studies also aim to determine how the treatments being compared affect significant subgroups of the population (RQ-4) or use subgroup analysis to generate ideas for future research. However, subgroup analyses may not always be appropriate, depending on the research question, size of the subgroups, and available evidence (see the section on Standards for Heterogeneity of Treatment Effects for additional discussion). The selection of comparators (RQ-5) and outcomes (RQ-6) should be justified with respect to the specific evidence gap and health decision that the study is designed to address (see the Standards Associated with Patient centeredness for additional discussion related to RQ-6). Notably, the choice of outcome measures—not just the choice of outcomes—can impact the interpretability, validity, and relevance of results (Velentgas, Dreyer, and Wu 2013); explicit justification should be provided for decisions about how to operationalize and measure the outcomes of interest.
2: STANDARDS ASSOCIATED WITH PATIENT CENTEREDNESS

PC-1: Engage people representing the population of interest and other relevant stakeholders in ways that are appropriate and necessary in a given research context.
Inclusion and individuals affected by the condition and, as relevant, their surrogates and/or caregivers. Other relevant stakeholders may include, but are not limited to, clinicians, purchasers, payers, industry, hospitals, health systems, policy makers, and training institutions. These stakeholders may be end users of the research or be involved in healthcare decision making.

As applicable, researchers should describe how stakeholders will be identified, recruited, and retained and the research processes in which they will be engaged. Researchers should provide a justification in proposals and study reports if stakeholder engagement is not appropriate in any of these processes.

PC-2: Identify, select, recruit, and retain study participants representative of the spectrum of the population of interest and ensure that data are collected thoroughly and systematically from all study participants.

Research proposals and subsequent study reports should describe the following:
• The plan to ensure representativeness of participants
• How participants are identified, selected, recruited, enrolled, and retained in the study to reduce or address the potential impact of selection bias
• Efforts employed to maximize adherence to agreed-on enrollment practices
• Methods used to ensure unbiased and systematic data collection from all participants

If the population of interest includes people who are more difficult to identify, recruit, and/or retain than other study populations (e.g., individuals historically underrepresented in healthcare research such as those with multiple disease conditions, low literacy, low socioeconomic status, or poor healthcare access, as well as racial and ethnic minority groups and people living in rural areas), then specify plans to address population-specific issues for participant identification, recruitment, and retention.

PC-3: Use patient-reported outcomes when patients or people at risk of a condition are the best source of information for outcomes of interest.

To measure outcomes of interest identified as patient-centered and relevant to decision makers (see RQ-6) for which patients or people at risk of a condition are the best source of information, the study should employ patient-reported outcome (PRO) measures and/or standardized questionnaires with appropriate measurement characteristics for the population being studied. In selecting PRO measures for inclusion in a study, researchers, in collaboration with patient and other stakeholder partners, should consider (1) the concept(s) underlying each PRO measure (e.g., symptom or impairment) and how it is meaningful to, and noticed by, patients in the population of interest; (2) how the concept relates to the health decisions the study is designed to inform; (3) how the PRO measure was developed, including how patients were involved in the development; and (4) evidence of measurement properties including content validity, construct validity, reliability, responsiveness to change over time, and score interpretability, including meaningfulness of score changes in the population of interest with consideration of important subgroups as well as the translation process if the measure is to be used in multiple languages. If these measurement properties are not known, a plan for establishing the properties must be provided. Caregiver reports may be appropriate if the patient cannot self-report the outcomes of interest.

PC-4: Support dissemination and implementation of study results.

All study results must be made publicly available. Study objectives and results should be presented in lay language summaries so they are understandable and actionable by as many people as possible. For study results that are appropriate for dissemination and implementation, involve patients and other relevant stakeholders in (1) planning for dissemination from the start of the research study, (2) creating a dissemination plan for the study indicating clinical implications, (3) working with patients or organizations to report results in a manner understandable to and usable by each target audience, and (4) identifying successful strategies for the adoption and distribution of study findings to targeted patient and clinical audiences.

Rationale for These Standards

The purpose of PCOR is to help people make informed healthcare decisions. To do this, PCORI must direct research
Nine years ago, Lucinda Shore noted episodes of shortness of breath and chest pain punctuated by rapid breathing and anxiety. She reported this to her doctor, and for the next five years was misdiagnosed with conditions ranging from stress to hormone imbalance to heart disease. Shore finally learned that she had emphysema from a genetic disorder called alpha-1 antitrypsin deficiency, often called simply alpha-1.

Today, at age 49, Shore receives weekly infusions of an enzyme she is missing; the treatment slows the progression of the disease and keeps her damaged lungs from deteriorating further. She expects to require such augmentation therapy for the rest of her life.

Shore is a patient partner in the PCORI Pilot Project, whose goal is to document the social and psychological health outcomes that affect people with rare diseases—illnesses found in fewer than 200,000 patients in the United States. The project aims to develop a measurement tool that defines the way these diseases affect a patient’s life beyond the medical symptoms. Shore’s experience with her delayed alpha-1 diagnosis and treatment and her desire to push physicians to see “the big picture”—and thus provide better care for patients—is a major incentive for her participation in the research project. The many psychosocial issues and day-to-day challenges associated with a chronic disease are of particular concern to Shore. These include the stigma of having a chronic condition, the fear that her sons will also develop it, a mistrust of doctors after her years of receiving incorrect diagnoses, and difficulty in social situations, such as dating. “When do you tell a person that you have a genetic disease?” Shore asks. “If I become extremely short of breath, it is concerning for people to hear me breathe. They wonder if I’m dying,” she says.

Among her project activities, Shore has helped seek out other patient partners and recruit participants. She also conducted a focus group with patients. She currently works on data analysis and is in regular contact with researchers about the project’s progress. Shore believes that including patient partners in a research project can offer researchers a different and valuable perspective. She says of her experience leading a patient focus group, “Patients speak with doctors and clinicians about certain issues, but when you’re around someone else who has your same condition, you tend to open up and you tend to share issues with each other that you don’t necessarily share with your doctor.”

In addition to supporting meaningful and systematic approaches for engaging patients and other stakeholders throughout the research process, these standards should facilitate improved understanding of how such engagement affects study design and outcomes through improved reporting of patient-centered research processes. The increased emphasis on patient and other stakeholder engagement in the research process reflects not only a commitment to important values of social justice and democratic participation (Domecq et al. 2014; Esmail, Moore, and Rein 2015) but also the hypothesis that such engagement will improve the quality and relevance of the research (Carman et al. 2013). Although the empirical evidence underlying early guidelines and recommendations for inclusion of patients and other stakeholders in research was limited and varied considerably in quality (Staniszewska et al. 2011; Gagnon et al. 2011), systematic efforts to evaluate the impact of patient and other stakeholder engagement on the quality of research are underway (Frank et al. 2015). Early findings suggest an effect of engagement on study design (including selection of comparators and outcomes), recruitment, and retention (Dudley et al. 2015; Forsythe et al. 2016).

To ensure patient centeredness, researchers should describe and report their plans for engaging those who represent the population of interest and other relevant stakeholders (i.e., how they will partner with them in appropriate phases of research) (PC-1). Patient engagement comprises activities that are fundamentally different from the conventional concept
of enrolling patients as participants in clinical research studies (see Patient Voices: Lucinda Shore and Research in Practice: Pamela Williams). This engagement can include, for example, getting patients and other stakeholders to help identify topics and formulate research questions; identify a study population and choose interventions, comparators, and outcomes; develop and implement optimal strategies for recruitment and retention of study participants; conduct and monitor the study (including data collection activities); analyze data and interpret the findings; and disseminate the results (Frank, Basch, and Selby 2014; Mullins, Abdulhali, and Lavallee 2012).

Researchers should ensure that study participants are representative of the spectrum of the population facing the health decision of interest. For this reason, the standards require that research proposals and reports document how the researchers identify, recruit, and retain study participants (PC-2). In developing this standard, PCORI evaluated specific strategies for involving people who have been historically underrepresented in research or who may be difficult to reach (Mullins, Barnet, et al. 2012). Participant recruitment and retention in general and minority recruitment and retention in particular are known to be significantly subpar in clinical research.

When patients and other stakeholders are engaged as research partners, they play a critical role in addressing the aforementioned challenges. Robust engagement approaches can strengthen recruitment and retention of study participants and ensure the successful conduct of the research. Examples of such approaches include community advocate training, community and/or stakeholder advisory boards, and/or collaborations with outside groups (e.g.,

RESEARCH IN PRACTICE

Pamela Williams

Millions of Americans with rare diseases not only often deal with misdiagnoses, diagnostic delays, and a frustrating search for treatments, but they also may experience social and psychological problems that the healthcare system doesn't recognize. Pamela Holtzclaw Williams, PhD, JD, RN, wants to change that. Williams, a University of Arkansas researcher, was awarded a PCORI contract to use feedback from patients with the rare disease alpha-1 antitrypsin deficiency (alpha-1) to tailor instruments to develop social burden measurement tools that are adapted by and for the alpha-1 community and others with rare diseases. Alpha-1 is a genetic disease that causes serious liver disease in children and liver and lung disease in adults.

“We're trying to measure the social determinants of health,” Williams says, assessing things like access to competent care, access to medicines, length of time to diagnosis, burdens of the disease, and a series of decisional burdens. Williams has formed a community-based participatory research partnership with the alpha-1 community, which has a vibrant nationwide patient advocacy network in place. “People [with alpha-1] are telling us new categories that can be included in [our] instruments,” Williams says. Decisions faced by those with rare genetic illnesses include the following: Who gets tested in the family? Who should receive the results? Should they get married? Should they have children?

Community partners, who sit on an advisory board that meets monthly, have been instrumental in recruitment of not just partnership members but also study participants from the community. Being a patient and community partner is not just a token leadership role. “My patient and community partners have told me that participating in the research project has made them have a better focus in their advocacy work; they are learning how to be strategic about their expenditure of energy,” Williams says.

While there have been challenges to her research—specifically, finding training for community partners on the particular processes common to a research environment, such as the technicalities of institutional review boards and grant writing, Williams has found the collaboration with patient participants overwhelmingly positive. Williams believes that patients should be a part of the research process from start to finish and that other researchers need to know that while it takes time and patience to collaborate with patient and community partners in research, the outcomes are beneficial to both the patient and research communities. “It's important to keep the project relevant to the patient-centered outcomes,” Williams says, “as opposed to being focused and relevant to institutional or providers’ desired outcomes.”

SECTION III: PCORI METHODOLOGY STANDARDS
When Juli was diagnosed with breast cancer, she worked through her options with her primary care doctor, Leigh Simmons, MD. Juli had extensive cancer in her left breast that had spread to her lymph nodes and to her right breast. With her doctor, Juli made the decision to proceed with a double mastectomy.

Juli says, “My decision, perhaps as for most breast cancer women, was very simple. I have breast cancer in both; if one is coming off, the other is coming off.”

Having decided to proceed with the mastectomy, Juli and Simmons put together a treatment team composed of an oncologist, a surgical oncologist, a plastic surgeon, a radiation oncologist, certified nurse practitioners, and nurses. “You realize these people are going to be very important for the rest of your life,” Juli says. “They’re going to be explaining things that I didn’t have a whole lot of knowledge about. I’m going to have to do a lot of research. I’m going to have to depend on them.”

Even though Juli had decided on a course of action, she had reservations about her treatment and expected outcomes, and looked to Simmons to help communicate them. One outcome that was of particular importance to Juli was her ability to continue to play bagpipes. “Not only was it, ‘Oh, I want to play my music,’ but it’s a great distracter for me,” Juli says. “It’s a great comfort for me to get out with my band and to play.”

Simmons says, “I really hadn’t thought about how that was going to be a problem after surgery, but she explained to me that there was potential that it might be because of where she holds the pipe.” She was reminded that the point of being treated for cancer is to enable the patient to continue to live a full life.

When she and Juli met with the treatment team, they were able to communicate the importance of this outcome for Juli’s health and well-being. The team listened and worked to set up a course of action that would have the least possible impact on her ability to play bagpipes.

“It didn’t eliminate [the issue]; it still had some impact,” Simmons says. “But they really heard what she was trying to say, and they realized that unless they kept [in mind] her needs to be able to do the things that she needed and loved to do, if they didn’t get that part right, the rest of her treatment might not go as well either.”

Patient centeredness in research also requires identification, measurement, and evaluation of outcomes that are meaningful to patients (see also RQ-6). Researchers and patient and stakeholder partners should identify the outcomes of interest and select the appropriate outcome measures. In cases where patients or people at risk of a condition are the best source of information about a particular outcome of interest, studies should employ PRO measures and/or standardized questionnaires with appropriate measurement characteristics for the population being studied (PC-3). PROs are health data reported by the patient “without amendment or interpretation of the patient’s report by a clinician or anyone else” and measured by self-report or interview (American Institutes for Research 2016; US Food and Drug Administration 2015). PROs are particularly important in assessing the effects of an intervention on symptoms or other outcomes (e.g., pain) that are only directly known by the individual patient, but they can be also be used to assess patient perspectives on outcomes (e.g., functioning) that may be observable to others (US Food and Drug Administration 2015). The standards do allow for development and evaluation of new PRO measures, when justified, to measure outcomes that are important to patients (see Patient Voices: Juli and Patient Voices: A Woman with Fibromyalgia). There also may be specific circumstances (e.g., studies of infants or people with severe cognitive impairment) in which the most suitable outcome measure(s) would be based on the reports of caregivers or through assessment of observable behaviors (e.g., facial expressions). In cases where patients cannot provide direct reports, caregiver reports of observable signs or events are preferred over reports of symptoms (e.g., pain) that require interpretation by the observer (US Food and Drug Administration 2015). Other sources of information, including clinician reports and administrative data (e.g., length of hospital stay), can also provide data on outcomes that are meaningful to patients and other end users of the research.
To conclude the patient-centered research process, dissemination of the study's findings should integrate the new results with related work and underscore meaningful clinical and policy implications from the perspective of patients and other stakeholders. Although, in rare cases, dissemination of research findings beyond traditional mechanisms of scientific publications and presentations may be outside the scope of an individual research project, researchers should work with patients and other stakeholders to support efforts for effective dissemination and implementation of results (PC-4). They can do this in several ways, including presenting results in formats that are accessible and understandable to target audiences such as clinicians, patients, and caregivers. Any successful implementation strategy must also identify and mitigate barriers to the adoption of clinical strategies that are informed by the study's findings. Researchers should work with their stakeholders to identify such barriers and to develop and refine dissemination plans prior to study completion.

A Woman with Fibromyalgia

Fibromyalgia is a condition characterized by widespread pain.

An MRI cannot tell a physician how my pain affects me. An EMG cannot tell a physician how severe my pain is. A blood test cannot tell my physician what challenges I face. On my first and subsequent visits to my rheumatologist, I was asked to fill out a questionnaire about my feelings and thoughts about my pain. My rheumatologists’ office used a questionnaire called the “Multi-Dimensional Health Assessment Questionnaire” (MDHAQ). The questionnaire asks 13 questions about what you have been able to do over the past week and uses the scale “without any difficulty,” “with some difficulty,” “with much difficulty,” and “unable to do.” It asks questions such as am I able to dress myself? Get in and out of bed? Lift a full cup or glass to my mouth? Bend down to pick up clothing from the floor? Walk two miles? Participate in sports and games as I would like? With the exception of participating in sports and games as I would like, I am capable of doing everything on this questionnaire without any difficulty.

The activities listed on the questionnaire do not encapsulate my life, and they do not include activities or tasks with which I would have difficulty.

The MDHAQ also asks me to rate, on a scale of 0 to 10, how much pain I have had because of my condition over the past week. I was also asked to rate my pain on a 0-to-10 scale by orthopedic surgeons and physical therapists. When I first started rating my pain, my ratings were somewhat arbitrary. Rarely, if ever, did I say my pain was above a 3. This was not because my pain wasn't bad or didn't affect me; rather, it was because I wanted to be strong and not give in to the pain. I said to myself, “I'm a strong woman with a high pain threshold. The pain isn't that bad.”

It wasn't until I had a conversation with my cognitive behavioral therapist that we realized that my thinking about my pain was a little off for two reasons. First, I consistently underrated my pain. I did not truly understand how to distinguish a 2 from a 5 on the pain scale. How can I rate my pain a 2 if I need to stop what I am doing to address the pain? How can I call my pain a 2 if it interferes with my life and day-to-day tasks and if my focus shifts from the task at hand to my pain? Second, there was no consistency to my ratings, and my responses where a moving target from week to week—and not because the pain was different from week to week. My responses were not truly anchored or grounded in any symptomatology or experiences to allow for consistency.
3: STANDARDS FOR DATA INTEGRITY AND RIGOROUS ANALYSES

IR-1: A priori, specify plans for quantitative data analysis that correspond to major aims.
Before analysis is undertaken, researchers should describe the analytic approaches that will be used to address the major research aims. These include definitions of key exposures, outcomes, and covariates. As applicable, study protocols should identify patient subgroups of interest, plans (if any) for how new subgroups of interest will be identified, and how analysis plans may be adapted based on changing needs and scientific advances. Researchers should also specify plans for handling missing data and assessing underlying assumptions, operational definitions, and the robustness of their findings (e.g., sensitivity analyses).

IR-2: Assess data source adequacy.
In selecting data sources and planning for data collection, researchers should ensure the robust capture of exposures or interventions, outcomes, and relevant covariates. Measurement properties of exposures and outcomes should be considered, and properties of important covariates should be taken into account when statistically adjusting for covariates or confounding factors.

IR-3: Describe data linkage plans, if applicable.
For studies involving linkage of patient data from two or more sources (including registries, data networks, and others), describe (1) the data sources and/or the linked data set in terms of its appropriateness, value, and limitations for addressing specific research aims; (2) any additional requirements that may influence successful linkage, such as information needed to match patients, selection of data elements, and definitions used; and (3) the procedures and algorithm(s) employed in matching patients, including the success, limitations, and any validation of the matching algorithm(s).

IR-4: Document validated scales and tests.
Studies should include documentation of the names of the scales and tests selected, reference(s), characteristics of the scale, and psychometric properties.

IR-5: Provide sufficient information in reports to allow for assessments of the study’s internal and external validity.
Reporting guidelines for specific designs can be found at the EQUATOR Network website (www.equator-network.org). This website lists all reporting guidelines that have been developed using formal approaches, many of which have been adopted by journals, such as CONSORT (for randomized clinical trials), STARD (for diagnostic tests), STROBE (for observational studies), and SRQR and/or COREQ (studies using qualitative research). Researchers should register their studies with the appropriate registry (e.g., clinicaltrials.gov for clinical studies or observational outcomes studies) and provide complete and accurate responses to the information requested (e.g., enter the required and optional data elements for clinicaltrials.gov).

IR-6: Masking should be used when feasible.
Masking (also known as blinding) of research staff should be implemented, especially in situations for which study participant and investigator masking are not feasible. When masking is not feasible, the impact of lack of masking on the results should be discussed.

Rationale for These Standards
The standards that address data integrity and analysis methods build on best practices in clinical research and add to several other categories of standards (including the Standards for Formulating Research Questions) by requiring documentation of key decisions about data collection and measurement as well as the assumptions made in the analyses. These standards emphasize prospective specification of the research design elements related to data and analyses to determine whether data are likely to be adequate to address the proposed research questions before the research begins. These standards apply to research that employs quantitative, qualitative, and/or mixed-method approaches and address whether the research uses existing data, involves primary data collection, or combines data from multiple sources.
Data to be used for PCOR need to contain all the variables required by the proposed analyses. This is particularly important in observational studies that use preexisting data but should also be considered when planning primary data collection. Assessing data adequacy involves determining whether data on important outcomes as well as other factors that could affect results (e.g., mitigating and confounding factors) are available and valid. (IR-1 and IR-2)

To allow users of the research findings to evaluate whether the study produced reliable results and the extent to which results generalize to other settings and populations, researchers must describe the decisions they made about the design and conduct of analyses and describe the data used (e.g., data collection activities, settings, analytic techniques, means of assuring data quality, comparability of study groups). It is essential for both transparency and the reproducibility of research that researchers adhere to standards that require the reporting of these details.

When data are combined from multiple sources, it is important that researchers verify and report what data elements come from which source, how they are linked, and how these linkages are tested and verified to ensure that data errors do not undermine results (IR-3). When data are derived from tests or scales, the test or scale characteristics as well as evaluations of their performance (psychometric properties) should be reported (IR-4). This provides a clear understanding of what researchers intended to measure and allows comparisons to be made across studies.

All research requires choices during design and assumptions during data analyses, and these should be declared. Researchers should describe how they systematically addressed all relevant threats to internal and external validity (Shadish, Cook, and Campbell 2002). Researchers should follow the relevant reporting guidelines established by medical journals and other professional groups. Consistency in reporting makes it easier to evaluate, compare, and synthesize the results of research. (IR-5)

Treatment effect estimates can also be biased due to a lack of masking (also known as blinding). Masking refers to the concealment of the treatment or intervention allocation from one or more individuals involved in a clinical research study. Both randomized controlled trials and observational studies can employ masking as part of the study design. Depending on the nature of the treatment, the type of follow-up required, and/or study resources, it may not always be possible to mask study participants, providers, or investigators. In these cases, researchers should mask the staff involved with the collection and analysis of data when possible. Lack of masking should be documented in study reports and the potential impact on results discussed (IR-6).
4: STANDARDS FOR PREVENTING AND HANDLING MISSING DATA

MD-1: Describe methods to prevent and monitor missing data.
Investigators should explicitly state potential reasons that study data may be missing. Missing data can occur from patient dropout, nonresponse, data collection problems, incomplete data sources, and/or administrative issues. As relevant, the protocol should include the anticipated amount of and reasons for missing data, plans to prevent missing data, and plans to follow up with study participants. The study protocol should contain a section that addresses steps taken in study design and conduct to monitor and limit the impact of missing data. This standard applies to all study designs for any type of research question.

MD-2: Use valid statistical methods to deal with missing data that properly account for statistical uncertainty due to missingness.
Valid statistical methods for handling missing data should be prespecified in study protocols. The analysis should explore reasons for missing data and assess the plausibility of the assumptions associated with the statistical methods. The potential impact of missing data on the results and limitations of the approaches used to handle the missing data should be discussed.

Estimates of treatment effects or measures of association should be based on statistical inference procedures that account for statistical uncertainty attributable to missing data. Methods used for imputing missing data should produce valid confidence intervals and permit unbiased inferences based on statistical hypothesis tests. Bayesian methods, multiple imputation, and various likelihood-based methods are valid statistical methods for dealing with missing data. Single imputation methods, such as last observation carried forward, baseline observation carried forward, and mean value imputation, are discouraged as the primary approach for handling missing data in the analysis. If single imputation-based methods are used, investigators must provide a compelling scientific rationale as to why the method is appropriate. This standard applies to all study designs for any type of research question.

MD-3: Record and report all reasons for dropout and missing data, and account for all patients in reports.
Whenever a participant drops out of a research study, the investigator should document the following: (1) the specific reason for dropout, in as much detail as possible; (2) who decided that the participant would drop out; and (3) whether the dropout involves participation in all or only some study activities. Investigators should attempt to continue to collect information on key outcomes for participants unless consent is withdrawn. All participants included in the study should be accounted for in study reports, regardless of whether they are included in the analyses. Any planned reasons for excluding participants from analyses should be described and justified. In addition, missing data due to other mechanisms (such as nonresponse and data entry/collection) should be documented and addressed in the analyses.

MD-4: Examine sensitivity of inferences to missing data methods and assumptions, and incorporate into interpretation.
Examining sensitivity to the assumptions about the missing data mechanism (i.e., sensitivity analysis) should be a mandatory component of the study protocol, analysis, and reporting. This standard applies to all study designs for any type of research question. Statistical summaries should be used to describe missing data in studies, including a comparison of baseline characteristics of units (e.g., patients, questions, or clinics) with and without missing data. These quantitative results should be incorporated into the interpretation of the study and reflected in the discussion section and, when possible, the abstract of any reports.

Rationale for These Standards
These standards apply to missing data as well as inaccurate data (e.g., in electronic health records), the treatment of which are governed by similar design and analytical considerations (Benchimol et al. 2015). Missing data are unrecorded or inaccurate values or unavailable information that would be meaningful for data analysis and could affect results and conclusions. Possible reasons for missing data include the following:

- Recoding errors or errors in measurement
- Utilizing data sets derived from records not intended for research, such as those generated from routine clinical care
- Involving or evaluating participant populations that are harder to retain over time, making it difficult to collect data
To address missing (and inaccurate) data, researchers must have a comprehensive understanding of how data were generated or collected. These processes should be described to ensure alignment of the approach used to address missing data, the data that are missing, and the causes of missing data and that these processes are clear, reasonable, and can be evaluated by the users of the research. Whether the data are sufficient or the missingness and inaccuracy too great depends on the specific research question(s). There may be cases, particularly with secondary data sources, that other data sources should be identified for research purposes, given the extent of missingness and/or inaccuracies.

Missing data can occur at two levels: 1) the respondent level (“unit nonresponse”), where an individual chooses not to participate in a study or provide data; and 2) the variable level (“item nonresponse”), where an individual does not answer a specific question or data for a specific variable or time point is not collected. Both types of nonresponse are problematic, although unit nonresponse generally has more impact on the final analyses. Data may not be recorded because of participant actions such as missing a scheduled follow-up appointment or dropping out of the study altogether. Regardless of the reason data are missing, if proper statistical methods for handling missing data are not employed, the analyses of those data can be biased or overstate the precision of the findings. These standards do not cover cases called “missing by design,” in which data are not available because the study design did not include plans to collect or obtain them.

The issue of missing data is a particularly important consideration in PCOR, given the emphasis on including diverse participant populations and clinical settings. This variety may make collecting complete data sets more challenging. For example, participants with more than one disease condition or those seen in community care settings may be harder to
retain over the course of the study due to challenges with engagement, trust, access, or other reasons. Preventing missing data is one of several reasons researchers may choose to conduct studies in specialized clinical settings and to exclude participants who may be less likely to complete the study.

Many researchers and groups have provided guidance on the handling of missing data (Li et al. 2014; Little et al. 2012; National Research Council 2010). Rigorous research requires that investigators first identify potential reasons for missing data and include plans for preventing and monitoring missing data in the study protocol (MD-1). For example, participants can face various challenges during research studies (see Patient Voices: Sarah). Involving patients and other stakeholders (e.g., clinic staff responsible for recruitment and follow-up) during the design of a study can help to identify and address potential reasons for dropout or difficulties in collecting data. Researchers and participants should work together to identify and address those reasons (see Research in Practice: Missing Data). The study protocol should justify the choice of statistical methods to handle missing data and describe the underlying assumptions and potential limitations of the methods (MD-2). Statistical inference procedures that account for statistical uncertainty due to missingness—such as Bayesian methods, multiple imputation, and likelihood-based methods—are preferred. Single imputation methods, which fail to account for uncertainty, are discouraged (see Research in Practice: Bias in Last Observation Carried Forward Method). The method(s) for addressing missingness should also be selected prior to reviewing the data in order to reduce the risk of adversely impacting the validity of the study findings.

All missing data methods rely on assumptions that are related to the study topic and design. The following are three common assumptions about the impact of missing data:

- What is missing has nothing to do with participant characteristics (known as “missing completely at random”).
- What is missing depends on participant characteristics predictive of the outcome, and these characteristics were measured (“missing at random”).
- What is missing depends on participant characteristics predictive of the outcome that were either not measured or not observed (“missing not at random,” or “non-ignorable” missingness).

RESEARCH IN PRACTICE

Missing Data

Courtney Schreiber, MD, MPH, is a gynecologist and clinical researcher at the University of Pennsylvania School of Medicine. Here she discusses how she uses patient narratives to learn more about how to tailor her studies to the needs of patients. She also uses her patient stories to help recruit and retain enrollees in clinical trials.

How do you talk about missing data with patients?

Schreiber: I often tell a story about a participant named Sally. She enrolled in one of our contraceptive clinical trials. She was absolutely committed to helping women like herself figure out which type of contraception is best. But, after a while, she stopped coming to her study appointments for a logistical reason. When we called her up, she had no idea that dropping out of the study would make it harder for us to learn which medicine worked best. She knew that other women were waiting to enroll in the study, so she thought that someone could just take her spot.

Did Sally leave the study?

Schreiber: No. We were able to figure out how to get her to her appointments: by keeping the research office open late on Thursday. One of the key factors in keeping Sally was being able to show her how much harder it was for us to figure out which medication worked best if we didn’t know how she felt at the end of the study. She had been feeling pretty good and thought we could just use the data we had. But once Sally was able to understand how helpful it was for her to stay on as part of the team, she finished the whole study.

How is Sally’s story useful in retaining participants on other studies?

Schreiber: We always promise our study participants that we will work with them to find the most convenient ways to participate, but that message doesn’t always stick. But many of them identify with Sally’s story, so it helps us explain why staying in the study is so helpful. And it really seems to work.
Investigators should track all study participants, recording when participants drop out as well as the reasons for dropout and attrition (MD-3).

Both missing data and the use of inappropriate methods to address missingness can lead to biased findings. Thus, investigators should report the extent and pattern of missing data and conduct a sensitivity analysis (MD-4). This analysis will help to determine how the missing data mechanism(s) affect(s) the study results (referred to as assessing the sensitivity of inferences).

For some conditions, such as dementia, patients typically worsen in their cognitive functioning over time. That means that a patient assessment collected midway through a trial will overestimate cognitive functioning at the end of it. If we want to understand a patient's cognitive functioning at the end of a trial, 10 months after starting a therapy, we cannot assume that earlier assessments (e.g., at six months) of patients who dropped out of a trial can be “carried forward” to the end of the trial as a substitute for the final planned assessment.

The figure above illustrates the bias that results from an imputation method called the last observation carried forward (LOCF) method, which has been a common solution to the problem of patients dropping out of trials before their final planned visit. Consider a patient randomized to the control treatment (line b) who drops out of the trial soon after his six-month assessment. If the trial investigators simply substitute this assessment for the planned final assessment, they will overestimate his level of cognitive functioning at the end of the trial. The difference between the assessed value at six months and the true value at 10 months is shown in the figure as the LOCF bias (Molnar et al. 2009).

Figure from Molnar et al. (2009) reprinted under the Creative Commons Attribution Share Alike License. Any derivative use of this work must be distributed only under a license identical to this one and must be attributed to the authors. The authors retain copyright of their work.
5: STANDARDS FOR HETEROGENEITY OF TREATMENT EFFECTS (HTE)

HT-1: State the goals of HTE analyses, including hypotheses and the supporting evidence base.
State the inferential goal of each HTE analysis, and explain how it is related to the topic of the research. Specify whether the HTE analysis is hypothesis driven (sometimes denoted as confirmatory), or hypothesis generating (sometimes denoted as exploratory). Hypothesis-driven HTE analyses should be prespecified, based on prior evidence (described clearly in the study protocol and study reports), and supported by a clear statement of the hypotheses the study will evaluate, including how subgroups will be defined (e.g., by multivariate score or stratification), outcome measures, and the direction of the expected treatment effects.

HT-2: For all HTE analyses, provide an analysis plan, including the use of appropriate statistical methods.
The study protocol should unambiguously prespecify planned HTE analyses. Appropriate methods include, but are not limited to, interaction tests, differences in treatment effect estimates with standard errors, or a variety of approaches to adjusting the estimated subgroup effect, such as Bayesian shrinkage estimates. Appropriate methods should be used to account for the consequences of multiple comparisons; these methods include, but are not limited to, p-value adjustment, false discovery rates, Bayesian shrinkage estimates, adjusted confidence intervals, or validation methods (internal or external).

HT-3: Report all prespecified HTE analyses and, at minimum, the number of post-hoc HTE analyses, including all subgroups and outcomes analyzed.
Both protocols and study reports must report the exact procedures used to assess HTE, including data mining or any automatic regression approaches. HTE analyses should clearly report the procedures by which subgroups were defined and the effective number of subgroups and outcomes examined. Within each subgroup level, studies should present the treatment effect estimates and measures of variability. Prespecified HTE analyses (hypothesis driven) should be clearly distinguished from post-hoc HTE analyses (hypothesis generating). Statistical power should be calculated and reported for prespecified (hypothesis-driven) analyses.

Rationale for These Standards
Because of differences in individual risk factors (e.g., sex, age, comorbidities, race, and lifestyle) and differences in disease stages, people often do not respond the same way to the same treatment. For some, the treatment will produce the intended benefit; for others, the benefit may be less than what was intended. Yet in others, the treatment may have no effect or have harms that outweigh the benefits. Heterogeneity of treatment effect (HTE) is the technical term used to describe this variability in treatment responses.

Patient-level information about the benefits and harms of a treatment is not always well described in research reports. Variations in responses to a treatment can be masked by study design and analysis. Clinical trials and observational studies often report only the average treatment effects (i.e., the effect of a treatment averaged across all study participants). Failure to measure and/or appropriately analyze variables that could be used to predict different treatment responses can also make it difficult to determine the effect of a treatment for a specific type of patient.

Explicitly addressing HTE in clinical research helps to answer the question, “What is likely to happen to patients like me?” This makes research results more useful for patients and clinicians who need to decide the best course of treatment (see Research Stories: Heterogeneity of Treatment Effects). The importance of understanding individual variability and how it affects the prevention and treatment of disease is a core tenet of “personalized” or “precision” medicine initiatives (Dahabreh, Hayward, and Kent 2016).

Methods to assess HTE vary in terms of methodological sophistication as well as the extent to which they can generate valid and reliable estimates of treatment effects. The central challenge of HTE analyses is to improve the patient-level information about the risks and benefits of a treatment while minimizing the possibility of spurious conclusions—namely, falsely detecting HTE (referred to in statistics as Type I error) or failing to detect true HTE (Type II error) in particular patient groups (PCORI 2016).

HTE analyses could include either 1) an estimation of separate treatment effects for subgroups of patients, or 2) predictions of whether a specific person will benefit from treatment. (This first type of approach to HTE is covered by these standards.) The most common approach is to use subgroup analyses to estimate the effects of treatments in
Heterogeneity of Treatment Effects

The figures below show six-year survival rates during the 1970s for patients with chest pain (angina) at high risk for mortality from heart disease. Patients were randomly assigned to heart bypass surgery (black dots) or a non-surgical treatment (white dots). The three panels depict patients at high, medium, and low risk for mortality. The risk categories were determined by four noninvasive factors: electrocardiogram (ECG or EKG) results, presence of hypertension, a previous instance of heart attack, and a marked limitation in the patient’s ability to perform everyday activities without difficulty (e.g., pain, shortness of breath, dizziness). The figure shows that the best treatment differed for patients depending on their risk of mortality before starting treatment (Detre et al. 1981). A low-risk patient (with a normal EKG and no history of heart attack or high blood pressure, who is able to perform everyday activities without strain) would live longer without an invasive bypass surgical procedure, while those patients at high risk (with an abnormal EKG and/or history of high blood pressure or previous heart attack, who cannot function normally in everyday activities) would live longer if treated with bypass surgery. Consequently, the most appropriate treatment for chest pain is heterogeneous (varies) across patients.

Treatments for patients with angina have improved since the early 1970s, but the statistical approach to evaluating treatment effects and how they depend on patient characteristics remains useful today (Sox and Goodman 2012).

Heterogeneity of Treatment Effects

Figures from Detre et al. (1981), reprinted by permission of Wolters Kluwer Health, provided by Copyright Clearance Center.
HTE analyses should be conducted in accordance with well-defined analytical plans and employ the use of appropriate methods (HT-2). First, specifying subgroups and reporting the number of subgroups tested ensures that methods are transparent and that errors from multiple statistical comparisons (e.g., Type I or II errors) are detected or avoided (Goldfine, Kaul, and Hiatt 2011; Lagakos 2006; Brookes et al. 2001). Second, assessing HTE requires the use of appropriate statistical contrasts (e.g., interaction tests, estimates of differences in treatment effects estimates with standard errors, or Bayesian shrinkage estimates). A common error in HTE analyses is to claim differences in treatment effect when one subgroup shows a statistically significant treatment effect and another does not. In some cases, the use of multiple analytic methods to look for consistent effects—while accounting for the different limitations of all the methods—may be the most useful strategy for drawing valid conclusions. These requirements apply to both randomized trials and observational studies. Although patients are randomized to the treatment arms in RCTs, subgroups are not randomized, resulting in subgroups with different baseline characteristics, which may confound the interpretation of results.

Protocols and study reports should provide sufficient detail regarding all HTE analyses that were conducted, including the procedures used to assess HTE, selection of outcomes, and effect estimates (HT-3). Failure to adequately report on HTE analyses undermines the transparency of the research process and makes it difficult to ensure that findings are appropriately interpreted and applied in practice.
6: STANDARDS FOR DATA REGISTRIES

DR-1: Requirements for the design of registries
Registries established for conducting patient-centered outcomes research (PCOR) must have the following characteristics:

A. Registry Purpose and Protocol. The purpose of the registry should be clearly defined to guide the design of key registry features including, but not limited to, the target population, the research question(s) to be addressed, the data source used, the data elements collected, data sharing policies, and the stakeholders involved in the development and use of the registry. Participants and other key stakeholders should be engaged in registry design and protocol development. Registries should aim to be user oriented in design and function.

B. Data Safety and Security. Registry custodians should comply with institutional review board (IRB) human subjects protection requirements, the HIPAA Privacy Rule, and all other applicable local, state, and national laws. Registries should provide information describing the type of data collection (primary or secondary source data), data use agreements (DUAs), informed consent documents, data security protections, plans for maintaining data protection if the registry ends, and approaches to protecting privacy, including risk of and/or process for re-identification of participants, especially for medical or claims records.

C. Data Elements and Quality. Standardized data element definitions and/or data dictionaries should be used whenever possible. When creating a new registry, published literature should be reviewed to identify existing, widely used definitions of outcomes, exposures, and confounders before drafting new definitions.

When collecting primary data, conduct multistakeholder engagement with potential participants and data users to prioritize data collection needs. When participants support their face validity, use validated instruments or PRO measures when available. If secondary data sources (e.g., electronic medical records, claims data) are used, describe the original purpose of the secondary data and verify the accuracy and completeness of the data, as well as the approach to and validity of the linkages performed between the primary and secondary sources.

The specifics of the quality assurance plan will depend on the type of data (primary or secondary) collected by the registry. In general, the plan should address (1) structured training tools for data abstractors/curators; (2) the use of data quality checks for ranges and logical consistency for key exposure and outcome variables and covariates; and (3) data review and verification procedures, including source data verification plans (where feasible and appropriate), and validation statistics focused on data quality for the key exposure and outcome variables and key covariates. A risk-based approach to quality assurance, focused on variables of greatest importance, is advisable.

D. Confounding. Registries should identify important potential confounders pertinent to the purpose and scope of the research during the planning phase and collect reasonably sufficient data on these potential confounders to facilitate the use of appropriate statistical techniques during the analysis phase. When conducting analyses, refer to the PCORI Methodology Standards for Data Integrity and Rigorous Analyses and Standards for Causal Inference Methods.

E. Systematic Participant Recruitment and Enrollment. Develop a sampling plan of the target population and identify recruitment strategies for participants that minimize the impact of selection bias. Participants should be enrolled systematically, with similar procedures implemented at all participating sites and for each intervention of interest. Confirm adherence to agreed-upon enrollment practices.

F. Participant Follow-Up. The objective(s) of the registry should determine the type, extent, and length of participant follow-up.

Describe the frequency with which follow-up measures will be ascertained, consider linkage with other data sources (e.g., the National Death Index) to enhance long-term follow-up, and identify the date of last contact with the participant in existing registries, where appropriate. Ensure that the participants are followed in as unbiased a manner as possible, using similar procedures at all participating sites.

Monitor loss to follow-up to ensure best efforts are used to achieve follow-up time that is adequate to address the main objective. At the outset of the registry, develop a retention plan that documents when a participant will be considered lost to follow-up and which actions will be taken to minimize loss of pertinent data. Retention efforts should be developed with stakeholders to ensure the efforts are suitable for the target population and anticipated challenges are addressed appropriately.
DR-2: Documentation and reporting requirements of registry materials, characteristics, and bias
Clearly describe, document with full citations where appropriate, and make publicly available registry materials including, but not limited to, registry protocols, data sharing policies, operational definitions of data elements, survey instruments used, and PROs captured. Modifications to any documents or data collection instruments should be clearly described and made available for registry users and participants. Characteristics of the participants in the registry should be described. Identify how the participants may differ from the target population to help assess potential selection biases. Document the loss to follow-up and describe the impact on the results, using sensitivity analyses (prespecified where possible) to quantify possible biases. Report the extent of bias clearly to stakeholders who may want to use the registry resource.

DR-3: Adapting established registries for PCOR
Previously established registries that intend to support new clinical research may not have been informed by all applicable methodology standards. When new research will use such registries, investigators should engage key stakeholders, including registry participants, to assess the feasibility of using the registry for new research and ensure the following:

- Informed consent documents are appropriately tailored to participant needs, characteristics, and conditions.
- Data elements are meaningful and useful to researchers and participants.
- Recruitment and retention strategies are feasible and effective.
- Registry policies are patient centered and the use of registry data is transparent to participants.
- Dissemination practices are appropriate and effective at reaching the communities from which the data are collected.
- Opportunities for bidirectional benefit exist between participants and researchers.
- Registry materials, described in DR-2, and informed consent forms are publicly available in accessible formats.

DR-4: Documentation requirements when using registry data
Researchers planning PCOR studies that rely on registries must ensure that these registries meet the requirements contained in Standards DR-1 and DR-2 and must document each required feature of each registry to be used (e.g., in an appendix to the funding application or study protocol). Deviations from the requirements with Standards DR-1 and DR-2 should be well documented and limitations of research related to the deviations from requirements should be addressed when reporting study findings.

Rationale for These Standards
A registry is an organized system that collects data for scientific, clinical, or policy purposes and can provide data for observational studies. Clinical registries are structured systems for collecting and organizing uniform data about the progress and outcomes associated either with the course of a disease or treatment or with the defining characteristic of the patients (e.g., device implantation or familial cancer risk).

Registries may compile data from different sources, such as medical records and lab reports, or across multiple healthcare settings, such as all hospitals in a state or all hospitals and physicians’ offices in a region. Registries can also be used to prompt or require the collection of additional data about a group of patients with a specific condition (e.g., diabetes or cancer), who undergo a diagnostic test (e.g., a PET scan), or have a particular treatment (e.g., hip replacement). For example, a cancer registry could include information from medical charts, surgery reports, and tumor pathology studies and then prompt clinicians to collect information on patients’ symptoms using a standardized questionnaire.

Registries have led to significant discoveries about the comparative effectiveness of different treatments. For example, collecting post-operative data about a group of patients who had hip replacements allowed researchers to uncover a significant problem with one type of artificial hip (see Research Stories: National Joint Registry of England and Wales).

When registries are properly designed (Agency for Healthcare Research and Quality 2016), they can provide data on groups of patients not always included in clinical trials, and they can be very responsive to rapid changes in medical practice. Registries can also be used to study factors that are difficult or impossible to randomize, such as clinician or patient behaviors, and factors that predict who is more likely to experience the benefits or harms of different treatments. The fact that registries are based on medical care as it is actually delivered in real-world situations increases the likelihood that the findings will be broadly applicable (see Research in Practice: Data Registries).

Although registries reflect real-world clinical practices, such data also have limitations for informing healthcare decisions. Data derived from clinical sources often may not meet the same level of quality control as data collected in a clinical trial...
The National Joint Registry of England and Wales, the world’s largest registry of hip replacements, contains records of more than 400,000 first, or “primary,” hip replacements. It tracks hip replacements performed since 2003 and documents when the joints fail, requiring patients to undergo a second surgery. The size of the registry allowed orthopedic surgeons and other investigators to compare the effectiveness of different materials used in the replacements—and thereby discover a fault much more quickly than if they had relied on patient reports in regular practice. The registry data showed that metal-on-metal hip replacements are more likely to fail than metal-on-ceramic or ceramic-on-ceramic products in the five years after hip surgery.

A 60-year-old man undergoing a primary hip replacement with a relatively small (28-millimeter-diameter) ceramic-on-ceramic product can expect a 2.0 percent risk of product failure during the first five years, while the same man with a similar metal-on-metal product can expect a 3.2 percent risk of product failure.

The registry’s 31,171 records of patients with metal-on-metal implants enabled the investigators to determine that the failure rate increased with the diameter of the implants—especially in younger women. The registry was also large enough to demonstrate that the higher failure rate could not be explained by a single manufacturer’s product; therefore, it appears to be a problem for all metal-on-metal implants. The orthopedic surgeons analyzing the registry data recommended against future hip replacements with metal-on-metal devices and suggested annual review of patients who already had these implants (Smith et al. 2012).

The quality of data derived from registries depends on a wide array of factors, including design, data elements, data sources, governance, and maintenance. Similar to other research using patient health data, registries must be carefully planned and oversight is needed to prevent confidentiality breaches. Because registries typically follow the natural history of patients, they require multiple points of follow-up. Registries are often most useful when they are maintained with data collected in a consistent way over periods that are long enough to capture long-term outcomes that are important to patients (see Patient Voices: Suzanne). However, the problem of missing data may be significant in registry studies requiring long-term data collection that includes multiple patient contacts.

Standard DR-1 specifically addresses the design and maintenance of registries. Registries are most likely to generate valid and relevant findings if their construction is based on a protocol related to at least one clinical question and includes plans for enrollment, patient follow-up, and data linkage. Such protocols must also include details of consent procedures and confidentiality protections that take into account the possibility of re-identification. Planning how best to collect and aggregate the data, ensure data security and the protection of patient privacy, ensure data quality and systematic participant recruitment and enrollment, and track follow-up increases the likelihood that the registry can answer essential PCOR questions. Once the registry is established, researchers should clearly document and report on the registry’s materials, characteristics, and potential sources of bias to ensure transparency to stakeholders who may want to use the registry data and/or results (DR-2). Researchers are encouraged to make registry information publicly available by submitting registry profiles to centralized, publicly accessible depositories, such as the Registry of Patient Registries (RoPR) maintained by the Agency for Healthcare Research and Quality (AHRQ).
Expanding the scope of an established registry to answer PCOR questions provides an opportunity to leverage existing resources to address a broader set of stakeholder needs (DR-3). When undertaking such efforts, stakeholder engagement can ensure that appropriate patient-centered adaptations are considered, including re-evaluating key informed consent documents when new research questions arise, expanding the collection of data elements and outcomes to include those most meaningful to participants, launching additional recruitment strategies that are realistic and feasible for participants, and optimizing dissemination practices to ensure that results reach all relevant communities participating in the registry efforts.

Researchers need to consider the same elements of the registry that were considered when it was designed; however, they also need to consider the advantages and limitations of the registry's data for their particular research question. Researchers must pay attention to issues of data quality and potential biases in studies that utilize registry data, because registries may not gather all the information needed for certain questions that arise after the registry is established, can be affected by a variety of time trends, and do not always include control populations (i.e., patients who do not receive treatment). Finally, researchers planning PCOR studies that rely on registries must meet documentation requirements for the registry being used and report any deviations from the previous standards along with study findings (DR-4).
Suzanne has had juvenile-onset rheumatoid arthritis for 22 years.

I've had both knees replaced, and the surgery and the rehabilitation occurred just as I expected and just as I'd been told. There were no surprises because of the large body of evidence (i.e., research, knowledge of the rheumatology provider community) about the results of knee surgery. Eight years after my knee replacements, it came time to tackle my wrists. Several of the small bones in my right wrist had grown together, preventing any significant movement. In other places in my right wrist, the bone had eroded. The bones in my right wrist were so badly damaged that the surgeon could flake pieces off of bone with his thumb.

Wrist replacement was now not an option, and a total fusion of the joint—removing all of the soft tissue and inserting some hardware to compel the bones to finish growing together—was the best way to alleviate pain and restore function. With this option, though, the hand would forever extend in a straight line from the forearm; no bending, no twisting, and no turning. None of the arthritis patients I know had gone through a wrist fusion or a wrist replacement—at least not within the past 10 years.

While the surgery team was excellent and provided ample information on the procedure itself, I was not aware of any registries or much research about patients’ views on the outcomes of this surgery.

I opted to move forward with the surgery, fingers crossed. If the only goal was to alleviate pain in the right wrist, the surgery was a complete success. Four years after the surgery, my right wrist was one of my best joints—strong, sturdy, and pain-free. What I did not expect was the effect of the surgery on my right hand and fingers. Now that the wrist isn’t mobile, the fourth and fifth fingers and the fourth and fifth metacarpal phalangeal joints on that hand have picked up much of the slack. The added stress to these areas has led to new joint deformities and challenges. Was it worth it? It is hard to say. The wrist pain and instability were significant functional issues, but I wonder if there were other options that could have fixed the wrist and not exacerbated the arthritis in the hand and fingers.

Now, I need to focus on whether I should have wrist replacement surgery or have a wrist fusion on the left wrist. Will a wrist replacement work for me? What will be the effect of wrist replacement on the fingers and hands? If I opt for a fusion instead, is there a way to preserve the fingers and hand, or should I expect the same functional impact as with the right wrist? Are there other surgical options beyond these two?

Before I launch into another surgery with unintended consequences, I would really like to see information about how other people with my condition have responded to wrist surgery and what my best options are, but as of now, I am not aware of any available information.
7: STANDARDS FOR DATA NETWORKS AS RESEARCH-FACILITATING STRUCTURES

DN-1: Requirements for the design and features of data networks
Data networks established for conducting PCOR must have the following characteristics to facilitate valid, useable data and to ensure appropriate privacy, confidentiality, and intellectual property (IP) protections:

A. Data Integration Strategy. In order for equivalent data elements from different sources to be harmonized (treated as equivalent), processes should be created and documented that either (1) transform and standardize data elements prior to analysis or (2) make transformation logic (including code and process documentation) available that can be executed when data are extracted. The selected approach should be based on an understanding of the research domain of interest.

B. Risk Assessment Strategy. Data custodians should measure the risk of re-identification of data and apply algorithms to ensure that the desired level of confidentiality is achieved to meet the need of the particular PCOR application. Data custodians should ensure that data privacy/consents of the original data source cover the intended usage of the data through the data network. Privacy protections, including which data will be released and how breaches are addressed, should be specified in the data use agreement. The physical security of the data and data platforms should be considered and addressed as well.

C. Identity Management and Authentication of Individual Researchers. Develop reliable processes for verifying and authenticating the credentials of researchers who are granted access to a distributed research network.

D. IP Policies. A research network should develop policies for the handling and dissemination of IP; networks should also have an ongoing process for reviewing and refreshing those policies. IP can include data, research databases, papers, reports, patents, and/or products resulting from research using the network. Guidelines should balance (1) minimizing impediments to innovation in research processes and (2) making the results of research widely accessible, particularly to the people who need them the most.

E. Standardized Terminology Encoding of Data Content. The data content should be represented with a clearly specified standardized terminology system to ensure that their meaning is unambiguously and consistently understood by parties using the data.

F. Metadata Annotation of Data Content. Semantic and administrative aspects of data contents should be annotated with a set of metadata items. Metadata annotation helps to correctly identify the intended meaning of a data element and facilitates an automated compatibility check among data elements.

G. Common Data Model. Individual data items should be organized into a standard structure that establishes common definitions and shows close or distant associations among variables. A common data model specifies necessary data items that need to be collected and shared across participating institutes, clearly represents the associations and relationships among data elements, and promotes correct interpretation of the data content.

DN-2: Selection and use of data networks
Researchers planning PCOR studies that rely on data networks must ensure that these networks meet the requirements contained in DN-1, and they must document the current maintenance status of the data network (e.g., currency of the data, level of data curation). Because different studies are expected to have different dependencies on various components of the data network, researchers should assess the appropriateness of the data in the network for a specific research study through the following activities:

A. Data content and conformance. Document what is actually needed for the research question and compare that to the sources in the network. Identify which data are best represented by the network’s data sources and how they are included in the study. Ensure that the representations and values of the data to be used from the network are sufficient for addressing the research question.

B. Data quality. Assess the data quality for the data sources that will be used. It is especially important to assess data completeness and plausibility. Where data are incomplete, identify and assess potential biases for completeness and consider alternate sources. Assess plausibility by reviewing data value distributions and comparing additional data sources that would have expected concordance with the selected sources. Determine
whether the data sources are of sufficient quality to be included in the analysis.

C. Sensitivity analyses. After the initial analysis is completed, perform sensitivity analyses on the data sources to test whether possible variations in data characteristics would affect the conclusions of the analysis. Specifically, measure the sensitivity of the conclusions to the following:

- Completeness and correctness of the data in the data network
- Availability of data sources that are most likely at risk of exclusion
- Temporal dependence of the data
- Operational definitions and decisions made to implement analysis

The results of these assessments should be documented and included with any findings from research studies using the data networks.

Rationale for These Standards

Collaborative data networks are agreements that coordinate data use across healthcare organizations. Data networks aggregate information from a range of data types (e.g., claims, medical records, pharmacy records, lab/pathology reports) and/or from various medical settings (e.g., health plans, hospitals, clinics, care facilities).

The infrastructure created by a network may then be used to establish disease-specific registries, maintain broad-ranging surveillance systems, or facilitate the conduct of randomized trials and observational studies. Data networks designed to facilitate research include such key components as data architecture (structure), privacy policies that protect patient information, governance guidelines that specify roles and responsibilities, and rules for how data elements are defined, described, and organized. Data networks may cover a wide range of potential research topics, such as studying the effectiveness of diagnostic tests, monitoring adverse effects of new drugs or devices, and testing new cancer treatments.

Data networks have many characteristics that make them important for the development and advancement of PCOR. Analyzing data already collected across organizations or medical settings can be more efficient than replicating studies in multiple locations or populations. Studies based on networked data are also likely to include more types of patients and variations in treatment patterns than would be available from any one site. This variety means that the results are more likely to be generalizable, improving the relevance of information to patients and clinicians.

Data networks are also more likely to include larger numbers of patients than can be enrolled in most trials and cohort studies. While a larger number of patients alone does not necessarily improve a study (Goodman, Schneeweiss, and Baiocchi 2017), it can make it possible to detect smaller differences in outcomes or recognize differences in less time. With large numbers of records, it is easier to determine whether the comparative effectiveness of a treatment varies across subgroups (e.g., between men and women or among people with different comorbidities).

Despite these advantages, a data network is only as good as the quality of its data. The challenges in establishing and maintaining data networks include harmonizing both the technical aspects and the expectations and responsibilities of the participating organizations. Setting standards for data networks ensures that key components are included when networks are designed—and that these components are considered when data from these networks are used in research studies.

Several organizations in the United States, Canada, and Europe have developed guidelines, identified best practices, and supported initiatives for defining crucial characteristics of data networks. These range from specific projects to standardize terminology, to recommended models for network structures, to laws or policies that are specific to health care—like the Health Insurance Portability and Accountability Act (HIPAA)—or general policies with applications in health care, such as the Organisation for Economic Co-operation and Development personal privacy guidelines (OECD 2013). A detailed discussion of all existing guidance is beyond the scope of this report, but investigators conducting research data networks should be familiar and comply with applicable laws, institutional policies, and additional methodological guidance.

The PCORI Methodology Standards for Data Networks recognize that the construction and management of the network is separate from the use of network data for PCOR studies. The first standard addresses development and maintenance of a network’s policies and procedures, and it specifies key elements necessary for a successful network that will generate useful data (DN-1). Definitions and other characteristics of data elements need to be clear, agreed on, and verified.
Processes need to be created and documented for the transformation of data elements so they are equivalent even when they come from different sources. Creating and maintaining standardized terminology (Kahn et al. 2016) and data descriptions require planning and resources.

Data networks link and share information about individuals in ways that could compromise patient privacy. Agreement and clarity about how patient privacy will be protected, who has access to the data, and who owns both the data and the research results are also necessary. Generally, study proposals and protocols should describe data use agreements (DUAs), informed consent, and approaches to data security. Proposals should also describe how researchers will address the risk of re-identifying patients and how the actual use of data compares with the originally designed and consented use. For patients and clinicians to realize the benefits of research via data networks without jeopardizing privacy, standards are required to limit and control access to the data. Additionally, data networks need to evaluate proactively whether any use or structural characteristic of the network is likely to compromise confidentiality.

The usefulness of a data network often increases with the longevity of the network. Longevity requires that the participating organizations maintain relationships and continue to collaborate. These relationships can be complex, and the agreements are often detailed and cover a range of roles and responsibilities. At a minimum, agreement needs to exist about ownership of both the data and the products resulting from the network (i.e., IP policies). Another important aspect is the need for standardized terminology, and information about the data elements (known as metadata) must be provided. Data elements should also be assembled into a model that shows the relationships among the data elements and helps all users to interpret the data correctly (Kahn, Batson, and Schilling 2012).

The second standard (DN-2) addresses the activities of researchers who seek to access and use data from an existing network. Increased availability of large volumes of data (“big data”) have raised concerns that data availability, rather than data suitability, are driving the use and analysis of this information in PCOR studies. Because the appropriateness of a data source varies according to the specific research question and how the data are used, it is not possible to certify the appropriateness of data in a network in terms of content and quality for all research questions. Therefore, assessments must be conducted as part of individual research studies.

Important categories of data content and quality have been identified as conformance, completeness, and plausibility (Kahn et al. 2015). These categories should be specifically assessed for research data derived from secondary sources in order to identify potential threats to data validity, including verifying that data values returned by queries reflect what was expected. Data equivalence evaluation for all involved data sources against each other should be documented, and any limitations should be clearly outlined.

Because the assessments of content and quality are often qualitative, sensitivity analyses should be used to provide some measurement of how the specific vulnerabilities of the data may become threats to the research validity. Quality assurance measures of the data sources should be assessed and documented. Any limitations imposed on the data network due to quality limitations of single data sources should be evaluated and documented.
8: STANDARDS FOR CAUSAL INFERENCE METHODS

CI-1: Specify the causal model underlying the research question (cross-cutting standard, applies to all PCOR/CER studies).
Researchers should describe the causal model relevant to the research question, which should be informed by the PICOTS framework: populations, interventions, comparators, outcomes, timing, and settings. The causal model represents the key variables; the known or hypothesized relationships among them, including the potential mechanisms of effect; and the conditions under which the hypotheses are to be tested. Researchers should use the causal model to determine whether and how the study can handle bias and confounding and the extent to which valid estimates of the effects of an intervention can be generated given the particular hypothesis, study design, analytical methods, and data source(s).

CI-2: Define and appropriately characterize the analysis population used to generate effect estimates.
Researchers should specify the eligibility criteria for inclusion in the study population and analysis. Decisions about which patients are included in an analysis should be based on information available at each patient's time of study entry in prospective studies or on information from a defined time period prior to the exposure in retrospective studies. For time-varying treatment or exposure regimes, specific time points should be clearly specified; relevant variables measured at baseline and up to, but not beyond, those time points should be used as population descriptors. When conducting analyses that in some way exclude patients from the original study population, researchers should describe the final analysis population that gave rise to the effect estimate(s), address selection bias that may be introduced by excluding patients, and assess the potential impact on the validity of the results.

CI-3: Define with the appropriate precision the timing of the outcome assessment relative to the initiation and duration of exposure.
To reduce potential sources of bias arising from inappropriate study design choices (e.g., immortal time bias), researchers must precisely define, to the extent possible, the timing of the outcome assessment relative to the initiation and duration of the exposure.

CI-4: Measure potential confounders before start of exposure and report data on potential confounders with study results.
In general, variables used in confounding adjustment (either in the design or analysis) should be ascertained and measured prior to the first exposure to the interventions (or intervention) under study. If confounders are time varying, specific time points for the analysis of the exposure effect should be clearly specified and the confounder history up to, and not beyond, those time points should be used in that analysis.

CI-5: Report the assumptions underlying the construction of propensity scores and the comparability of the resulting groups in terms of the balance of covariates and overlap.
When conducting analyses that use propensity scores to adjust for measured confounding, researchers should consider and report how propensity scores will be created (high dimensional propensity score versus a priori clinical variables) and which balancing method will be used (e.g., matching, weighting, or stratification). Researchers should assess and report the overlap and balance achieved across compared groups with respect to potential confounding variables.

CI-6: Assess the validity of the instrumental variable (i.e., how the assumptions are met) and report the balance of covariates in the groups created by the instrumental variable.
When an instrumental variable (IV) approach is used (most often to address unmeasured confounding), empirical evidence should be presented that describes how the variable chosen as an IV satisfies the three key properties of a valid instrument: (1) the IV influences the choice of intervention or is associated with a particular intervention because both have a common cause; (2) the IV is unrelated to patient characteristics that are associated with the outcome; and (3) the IV is not otherwise related to the outcome under study (i.e., it does not have a direct effect on the outcome apart from its effect through exposure).

Rationale for These Standards
One of health research’s key objectives is to determine the causes of a health outcome. This is the information that patients, families, and clinicians most frequently want—will the treatment they choose cause improvement in the...
What is the optimal time for patients with HIV infection to start combined antiretroviral therapy? Investigators from the HIV-CAUSAL Collaboration conducted a comparative effectiveness cohort study in 20,971 patients. The team used advance statistical methods—called dynamic marginal structural models—that improved its capacity to emulate randomized controlled trials by correcting for changes in treatment and health status over time. Conventional statistical methods may generate biased findings when physicians change treatment in response to changes in patient health, so marginal structural models mark a major advance for studies in which patients are not assigned randomly to different treatment strategies.

Using routine healthcare data from the Veterans Health Administration and HIV clinics in Europe, the investigators considered the question of whether to start combined antiretroviral therapy earlier (before the laboratory measure of immune function drops below a relatively high threshold) or later (after the measure drops below an intermediate or lower threshold). The marginal structural model revealed that starting treatment earlier is more effective at reducing the rate of mortality and AIDS-defining illness (the diseases associated with AIDS). Patients who delayed starting this therapy until the low laboratory threshold suffered a 38 percent increase in the rate of mortality and AIDS-defining illness (the HIV-CAUSAL Collaboration 2011).

Randomized controlled trials (RCTs) are a methodological answer to this problem. Because they randomly assign participants to a treatment, the distribution of risk factors for the health outcome—known as potential “confounders” of the causal relationship—is likely to be similar across the groups under review. If a similar distribution of potential confounders across all the different possible assignments of patients were achieved, then the average estimate of how much the intervention affects the outcome would be correct, even if individual participants differ in ways besides the treatments they receive.

The problem is that not all questions can be studied using a randomized trial and even when they can, randomization cannot address all threats to the validity of results. Researchers often use observational methods—study designs in which the interventions are decided not by random assignment but as part of the normal process of clinical care—for settings in which a randomized trial is impossible, unethical, or too costly. But even in randomized trials, there may be post-randomization confounding or selection bias (from, for example, informative patient dropout, crossover to other treatments, protocol violations), or randomization may produce groups that are different in important ways by chance.

By helping to address sources of confounding and bias from design-related errors, causal inference methods focus on increasing confidence that the treatment being studied is causing the outcome (see Research Stories: Human Immunodeficiency Virus). Methods to address confounding include various forms of population restriction and regression methods. Each method also addresses the issue of confounding differently. For example, propensity scores, like standard regression methods, cannot directly solve the problem of unmeasured confounding factors, but they can adjust for multiple confounders and variables that serve as proxies for other, unmeasured confounders (Rosenbaum and Rubin 1984). IV methods, on the other hand, purport to get around the unmeasured confounder problem by identifying and exploiting naturally occurring distributions of treatment choices that resemble randomization, but these methods rely on additional assumptions that are untestable using the data available. While these tools are both powerful and useful, they have important limitations. Most of these methods can control only for the effect of confounders that are actually identified (and for which data are available). The assumptions made in any of these methods also require extraordinarily close scrutiny.

Although these statistical methods can produce more accurate estimates of treatment effects and uncertainty, none address serious threats to valid causal inference arising from design-related errors, including selection bias, reverse
causation, and adjustment for intermediate variables (Goodman, Schneeweiss, and Baiocchi 2017). More broadly, sophisticated analytical methods cannot compensate for poor design or low-quality data. Therefore, the Standards for Causal Inference Methods should be understood as applying to both the design and the analysis of observational studies, with the exception of CI-1, which applies to all PCOR studies, including RCTs.

Researchers should always begin by explicitly articulating the hypothesized causal model underlying the research question and detail how the study is designed to assess the particular effect(s) of interest (CI-1). The appropriate application of analytical methods and interpretation of results depends on the specification of a causal model, study design, and causal relationship(s) of interest (Petersen and van der Laan 2014).

Observational studies should be designed to emulate an RCT (Goodman, Schneeweiss, and Baiocchi 2017), which requires specifying the eligibility criteria for inclusion in the study population and analysis (CI-2) and clearly defining the timing of the outcome measurement relative to the treatment or exposure (CI-3). Measuring and adjusting for pretreatment variables is common in observational studies and is an acceptable approach for mimicking randomization at baseline; however, if these variables are measured again (or if adjustments are made based on those variables) between baseline and follow-up, then researchers may introduce bias if these variables are affected by the study treatment. An alternative is to employ a new-user design, which restricts the analysis to new (rather than prevalent) users of a treatment and the appropriate comparison group (Ray 2003).

Variables considered confounders should be measured before the treatment. If these variables change over time, this change needs to be addressed in the study design or analysis (CI-4). Whether a variable is treated as a confounder should be based on subject matter knowledge and the underlying causal model. Adjusting for variables that are not confounders, including intermediate variables (mediators), can introduce additional bias (Schisterman, Cole, and Platt 2009).

Creating standards specific to all current statistical methods for causal inference that are applicable to all potential research questions is not feasible; the choice of appropriate statistical methods depends on the research question of interest, including the causal relationship of interest, and the data source(s) utilized. Given this situation, standards are included for two general types of analysis that are relatively well-developed and increasingly used in PCOR: propensity scores (CI-5), which can be used to address measured confounding, and instrumental variables (CI-6), which can be used to address both measured and unmeasured confounding, but with untestable assumptions. When any sophisticated analytical approaches are used, transparency is particularly important. Sensitivity analyses are also critical, and additional efforts are required to document the assumptions underlying the analyses and how these assumptions were examined.
9: STANDARDS FOR ADAPTIVE AND BAYESIAN TRIAL DESIGNS

AT-1: Specify planned adaptations, decisional thresholds, and statistical properties of those adaptations.
The adaptive clinical trial design must be prospectively planned and the design must be clearly documented in the study protocol before trial enrollment begins, including at a minimum the following:

• All potential adaptations, including timing
• Interim trial findings that will be used in determining each adaptation
• Statistical models and decisional thresholds to be used
• Planned analyses of the trial endpoint(s)

The description of the design should be sufficiently detailed that it could be implemented based on the description of procedures. This specification should include a statistical analysis plan in which all necessary detail is provided regarding planned interim and final analyses.

Additionally, the statistical properties of adaptive clinical trial designs should be thoroughly investigated over the relevant range of important parameters or clinical scenarios (e.g., treatment effects, accrual rates, delays in the availability of outcome data, dropout rates, missing data, drift in participant characteristics over time, subgroup-treatment interactions, or violations of distributional assumptions). Statistical properties to be evaluated should include Type I error, power, and sample size distributions, as well as the precision and bias in the estimation of treatment effects.

AT-2: Specify the structure and analysis plan for Bayesian adaptive randomized clinical trial designs.
If a Bayesian adaptive design is proposed, the Bayesian structure and analysis plan for the trial must be clearly and completely specified. This should include any statistical models used either during the conduct of the trial or for the final analysis, prior probability distributions and their basis, utility functions associated with the trial's goals, and assumptions regarding exchangeability (of participants, of trials, and of other levels). Specific details should be provided as to how the prior distribution was determined and if an informative or noninformative prior was chosen. When an informative prior is used, the source of the information should be described. If the prior used during the design phase is different from the one used in the final analysis, then the rationale for this approach should be indicated. Computational issues should be addressed, including describing the choice of software, the creation and testing of custom software, and software validation. Software used for Bayesian calculations during trial design, trial execution, and final analysis must be functionally equivalent. When feasible, software or other computing packages should be made available to relevant stakeholders for evaluation and validation.

AT-3: Ensure that clinical trial infrastructure is adequate to support planned adaptation(s) and independent interim analyses.
The clinical trial infrastructure, including centralized randomization, data collection related to the assessment and recording of key outcomes, data transmission procedures, and processes for implementing the adaptation (e.g., centralized, web-based randomization), must be able to support the planned trial. In simple adaptive trials, qualitative verification of the capabilities of the proposed trial infrastructure may be adequate. Trials with more complicated requirements, such as frequent interim analyses, require thorough testing prior to trial initiation. Such testing should involve the trial's data collection and data management procedures, the implementation of the adaptive algorithm, and methods for implementing the resulting adaptation(s). The impact on the trial's operating characteristics of delays in collecting and analyzing available outcome data should be assessed. The study plan should clarify who will perform the analyses to inform adaptation while the study is ongoing and who will have access to the results. The interim analyses should be performed and reviewed by an analytical group that is independent from the investigators who are conducting the trial. Trial investigators should remain blinded to changes in treatment allocation rates as this information provides data regarding treatment success.

AT-4: When reporting adaptive randomized clinical trials, use the CONSORT statement, with modifications.
The following sections of the 2010 CONSORT statement can be used to report key dimensions of adaptation:
• Adaptation of randomization probabilities (sections 8b and 13a)
• Dropping or adding study arms (sections 7b and 13a)
• Interim stopping for futility and superiority or adverse outcomes (sections 7b and 14b)
• Sample size re-estimation (sections 7a and 7b)
• Transitioning of stages (e.g., seamless Phase II/III designs) (sections 3a, 7a, 7b, and 16)
• Modification of inclusion and exclusion criteria (sections 4a and 13a)

CONSORT sections 16, 20, and 21 provide additional guidance on reporting aspects of an adaptive trial.

All possible adaptations included in the prospective design, even if they did not occur, should be included in the study reports.

Rationale for These Standards

Randomized trials have advantages and disadvantages in determining the comparative effectiveness of different interventions. RCTs can provide strong evidence, but they are also often perceived as taking too long to produce results or being too rigid in a rapidly changing field. One solution is to employ adaptive trials, which build on the approaches used in most clinical trials but differ in that they allow changes to be made to a study after it has begun. An adaptive clinical trial is one in which key trial characteristics (e.g., randomization proportions, sample size, treatment arms, or eligibility criteria) evolve according to pre-specified rules during the trial in response to information accruing within the trial itself. Potential advantages of this approach include statistical efficiency, improved patient outcomes, or improved balance of risks and benefits to trial participants (Berry et al. 2010). Rather than waiting until the end of the study period to see the results and suggest changes for the next study, changes are planned as part of the trial design and executed based on the analyses conducted during the trial.

Recognizing the need for innovative clinical trial design, representatives from the National Institutes of Health's Clinical and Translational Science Award programs have identified adaptive clinical trial design as a high-priority methodological issue “to increase the efficiency of comparative effectiveness trials” (Helfand et al. 2011). Adaptive designs are particularly appealing for PCOR because they could maintain many of the advantages of randomized clinical trials while minimizing some of the disadvantages. Adaptive methods can sometimes shorten trials. They also can increase the relevance of trial results by adjusting both the composition of patient groups and the treatments being compared. But such flexibility and efficiency have to be balanced with the risk that adaptive trials typically require a longer design period, are more complex, and are more difficult to conduct. Therefore, specialized expertise and experience are required to design and conduct these trials.

To date, the use of adaptive trials for PCOR has been limited, with few published examples (Fiore et al. 2011; Muss et al. 2009). However, many trials have some adaptive features—such as stopping guidelines and sample size re-estimation—that have become standard practices. Many adaptive features can be implemented individually using classical statistics, often called frequentist approaches, but complex designs combining several dimensions of adaptation typically require a different statistical approach known as Bayesian analyses. These adaptive designs allow for the incorporation of prior or external information that may be similar to, but not exchangeable with, information in the proposed trial.

Adaptive trials should adhere to the principles of good design and analysis that apply to all rigorous research; however, their complexity can make this more difficult, requiring extra attention to specific steps in the research process. The experience in therapeutics and device trials, combined with theoretical considerations, provide the basis for standards governing the design and conduct of adaptive trials in PCOR. Additional guidance is available in the published literature, including an FDA draft guidance document on this topic (US Food and Drug Administration 2010a).

Good adaptive trial design requires preplanning and specification of procedures at the outset. Adaptive trials typically require that simulations or sensitivity analyses be conducted during the design phase to define the error rates. Descriptions of the design—both in protocols and published papers—must include adequate detail about the study elements and planned adaptations. Given the potential complexity introduced by adaptations, the timing of interim analyses and the changes that could be made based on those data should be determined before the trial starts (**AT-1**). In addition, adaptive trials that use Bayesian approaches require even more detailed specification of the analysis plan than is typically provided or would be required in traditional trials, both because software is not standardized and because Bayesian methods have analytic features absent in standard trials (**AT-2**).

Other components of adaptive trials necessitate special focus. Adaptation requires an infrastructure to obtain and analyze the data needed for design changes as the trial proceeds. Because this capacity is not the norm in conventional trials, it is included in the standards (**AT-3**). Once an adaptive trial is complete, standardized reporting of trials has become part of best practice and, to the extent that existing reporting guidelines (i.e., CONSORT) can be used, they should be followed and any modifications described (**AT-4**).
10: STANDARDS FOR STUDIES OF MEDICAL TESTS
(formerly Standards for Studies of Diagnostic Tests)

MT-1: Specify the clinical context and key elements of the medical test.
Evaluation of tests used to inform medical decision making (e.g., diagnostic, prognostic, or predictive tests) should specify each of the following items and provide justification for the particular choices: (1) the intended use of the test and the corresponding clinical context, including referral for additional testing, referral for additional treatments, and modification of current treatment and target populations; (2) the choice of comparator (e.g., another test or no test) and goal of the comparison; (3) the technical specifications of the test(s) as implemented in the study; (4) the approach to test interpretation; (5) the sources and process for obtaining reference standard information, when applicable; (6) the procedures for obtaining follow-up information and determining patient outcomes, when applicable; and (7) the clinical pathways involving the test and the anticipated implications of test use on downstream processes of care and patient outcomes. These items ought to be specified for all types of tests used for medical decision making and for all designs, including observational designs (e.g., those using medical records or registries). If these items are not available directly, validated approaches to approximating these study elements from available data should be used.

MT-2: Assess the effect of factors known to affect performance and outcomes.
Studies of tests used to inform medical decision making should include an assessment of the effect of important factors known to affect test performance and outcomes, including, but not limited to, the threshold for declaring a “positive” test result, the technical characteristics of the test, test materials (e.g., collection, preparation, and handling of samples), operator dependence (e.g., lab quality, interpretation requirements), and the setting of care.

MT-3: Focus studies of medical tests on patient-centered outcomes, using rigorous study designs with a preference for randomized controlled trials.
A prospective randomized design should be used when possible to assess the diagnostic, prognostic, predictive, and/or therapeutic outcomes of testing. If a nonrandomized design is proposed, a rationale for using an observational study (or modeling and simulation) should be provided, and efforts to minimize confounding documented.

Rationale for These Standards
Medical tests—which include a broad range of chemical, imaging, electrical, functional, and visual examinations—are an essential part of modern medicine. Healthcare providers recommend tests to screen for unrecognized conditions, test diagnostic hypotheses, estimate location or extent of a disorder, develop prognostic estimates, or measure response to treatments. Patients, caregivers, and clinicians need specific information about the expected benefits and harms of a test in their particular circumstances when deciding whether a test should be performed. When the research on a test is flawed, clinicians may underestimate the likelihood that a patient has (or is at risk of developing) a disease and thereby provide misleading information to patients and caregivers. Medical tests may also expose patients to unnecessary inconvenience or harm, including radiation exposure and complications from invasive procedures undertaken in response to test results.

Overall, the impact of medical testing on patient outcomes has often been understudied in clinical research. Although these tests generate information, they do not necessarily (or directly) produce a better outcome for the patient. Studies of medical tests tend not to assess all relevant effects on patients, particularly long-term benefits and harms, as well as cognitive, emotional, social, and behavioral effects (Bossuyt and McCaffery 2009). To improve patient outcomes, the test results must be used effectively—for example, by helping with a decision about which treatment or intervention to use, what lifestyle changes might avert or ameliorate a disease, or what additional tests should be performed. A challenge for investigators designing a study of a medical test is whether to specify the actions clinicians should take based on test results (such as observation, further testing, or treatment) or to leave those responses to the discretion of patients and their providers.

Medical tests can be studied through both experiments (including RCTs) and observational studies (including reviews of medical records and registries). A wide variety of observational designs has been used to assess the accuracy and impact of medical tests (Lord, Irwig, and Bossuyt 2009). Although guidelines exist that address the reporting of diagnostic or predictive accuracy studies, standards have not been well defined for studying the impact of medical tests on subsequent care or patient outcomes (see the Standards for Data Integrity and Rigorous Analyses for more information on reporting guidelines).

The standards for studies of medical tests reflect three principles for rigorous PCOR. The first standard emphasizes the
importance of understanding key elements of medical tests and the clinical context in which the test is used (MT-1). The second standard asserts that accuracy alone is often not a sufficient measure of the benefit of a test. The overall scientific validity and clinical utility of a medical test depend on knowing how key factors affect clinical outcomes (Ferrante di Ruffano et al. 2012). Studies should include an assessment of the effect of factors known to affect test performance and outcomes, including the threshold for declaring a “positive” test result, the technical characteristics of the test, test materials (e.g., collection, preparation, and handling of samples), operator dependence (e.g., lab quality, interpretation requirements), and the setting of care (MT-2).

The third standard underscores how alternate tests or testing strategies should be compared in terms of their effects on patient-centered outcomes using the optimal and most feasible study design (MT-3). Although a randomized study designed to capture relevant patient outcomes generally provides the strongest clinical evidence, the use of RCTs is not always feasible; alternative approaches to performing clinical studies of medical testing are appropriate in some situations (Lord, Irwig, and Bossuyt 2009). When non-randomized designs are used, the choice of study design should be justified and strategies for minimizing the risk of bias in the non-randomized design described. Regardless of study design, investigators should ensure that important patient-relevant outcomes are accounted for in the study.
11: STANDARDS FOR SYSTEMATIC REVIEWS

SR-1: Adhere to National Academy of Medicine (NAM) standards for systematic reviews of comparative clinical effectiveness research, as appropriate.

Systematic reviews, which critique and synthesize the existing literature, can also identify evidence gaps and inform decisions of how to address these gaps. Existing standards for systematic reviews developed by credible authorities, such as the Cochrane Collaboration and the Agency for Healthcare Research and Quality, vary somewhat in their recommended approaches. The PCORI Methodology Committee endorses the standards issued by the NAM in 2011 but recognizes both the importance of conducting systematic reviews consistent with updates to best methodological practices and that there can be flexibility in the application of some standards without compromising the validity of the review, including the following:

- Searches for studies reported in languages other than English are not routinely recommended but may be appropriate to some topics.
- Dual screening and data abstraction are desirable, but fact-checking may be sufficient. Quality control procedures are more important than dual review per se.
- Independent librarian peer review of the search strategy is not required; internal review by experienced researchers is sufficient.

Researchers should describe and justify any departures from the 2011 NAM standards (e.g., why a particular requirement does not apply to the systematic review).

Rationale for These Standards

Systematic reviews find, assess, and synthesize results from several individual studies to determine what is known about the benefits and harms of specific medical interventions. Systematic reviews are used by clinicians in practice, by patients in making choices about their care, and by organizations in developing clinical practice guidelines and policies. Systematic reviews are also used to identify the gaps in the available research evidence. Systematic reviews are important for PCOR because they facilitate the efficient use of existing research results and aid in targeting future research. Often, it is only by looking at a large body of evidence that it is possible to assess the comparison of different health interventions (see Research Stories: Getting off the Ventilator).

Systematic reviews also make it possible to determine which relevant patient-centered questions have and have not been answered (or even asked) in research. Further, systematic reviews can serve as a vehicle for transparency, offering new insights into diseases and treatments, particularly when individual patient data are made available for pooled analyses (see Research Stories: Aspirin for the Prevention of Colorectal Cancer).

Many organizations and individuals conduct systematic reviews; however, the processes used to conduct these reviews and their overall quality can vary. The search for evidence may be more or less exhaustive, and the criteria used to include or exclude studies as well as how the included studies are evaluated may differ. Results may also be affected by errors when data are collected and combined from different studies.

In 2011, the National Academy of Medicine (then known as the Institute of Medicine) released a report titled Finding What Works in Health Care: Standards for Systematic Reviews (Institute of Medicine 2011). PCORI has concluded that these standards are generally useful, though emerging literature and methods may augment these standards for use in PCOR. The NAM standards were developed by a credible panel based on a broad review that considered and incorporated existing authoritative sources (e.g., Cochrane Collaboration, AHRQ Evidence-Based Practice program). The NAM standards are designed to support consistent application of a well-defined set of methods and the opportunity for public review so that users can link judgments, decisions, or actions to the data on which they are based. Additionally, they are intended to increase objectivity, minimize bias, improve reproducibility, and lead to more complete reporting. The NAM standards are appropriate for inclusion in the PCORI Methodology Standards because they aim to ensure patient centeredness in conducting systematic reviews of clinical effectiveness research (SR-1).

The NAM standards address how to design and conduct systematic reviews that rely on published data and conventional statistical models; however, they do not address network meta-analysis and individual participant data meta-analysis, two approaches that are used increasingly in CER. Additionally, different variations on systematic reviews are being developed to respond to the needs of stakeholders and users (e.g., rapid reviews, evidence maps, scoping reviews) (Peterson et al. 2016; Levac, Colquhoun, and O'Brien 2010). Guidance on best practices for conducting systematic reviewers continuously evolves, and researchers should ensure that systematic reviews are conducted consistent with best methodological practices.
Getting off the Ventilator

When hospital patients are put on a mechanical ventilator, it’s usually a matter of life and death. But the longer people are on ventilators, the greater the likelihood they will suffer complications. Usually, hospital staff members decide when to “wean” patients from the ventilators, but some studies found that doctors underestimate the ability of patients to breathe on their own. Other studies claimed that using a protocol, a series of regimented steps, for ventilator weaning is better than staff judgment, but methodological flaws made the conclusion uncertain.

To explore this issue further, researchers performed a systematic review of 11 studies (including almost 2,000 patients) that compared weaning that uses or doesn’t use protocols for reducing the duration of mechanical ventilation in critically ill adult patients. The analysis (Blackwood et al. 2011) indicated that a weaning protocol, as opposed to staff judgment, reduced the average time on the ventilator by 20 to 36 hours and time in the intensive care unit by about a day. In most cases, weaning protocols were better than staff judgments.

Aspirin for the Prevention of Colorectal Cancer

Since the 1990s, observational studies, such as cohort studies, have shown that patients who regularly use aspirin suffer a lower-than-average risk of colorectal cancer. Because the protective benefit takes more than 10 years to appear, even long-term randomized controlled trials like the Physicians’ Health Study could not replicate these findings. To address the limitation of existing trial data, investigators conducted a systematic review of four randomized trials of daily aspirin versus placebo that had originally been designed to evaluate the benefits of aspirin for preventing heart attacks and strokes. The investigators took their meta-analysis a step further by obtaining the original patient data from those trials and using national cancer registries in the United Kingdom or Sweden to follow patients for up to 20 years after they started taking aspirin or a placebo.

The investigators found that daily aspirin reduced the 20-year risk of colorectal cancer by 24 percent and colorectal cancer mortality by 35 percent (Rothwell et al. 2011, 2012). Patients did not necessarily continue taking daily aspirin after the original randomized controlled trials finished; an average of six years of daily aspirin during the trials was sufficient to reduce the rate of colorectal cancer and its mortality. Among patients who were assigned randomly to take aspirin for at least five years, higher dose aspirin failed to improve on the benefit of a relatively low dose (75 mg to 300 mg per day).

By linking trial data with national cancer registries, the investigators were able to answer a research question more efficiently; a new randomized trial to address the question would have required 20 years and also millions of dollars in additional funding.
12: STANDARDS ON RESEARCH DESIGNS USING CLUSTERS

RC-1: Specify whether the study objectives, the interventions, and the primary outcomes pertain to the cluster level or the individual level.
Describe (1) the target population of clusters and individuals to which the study findings will be generalizable and (2) the clusters to be randomized and the subjects to be enrolled in the trial.

RC-2: Justify the choice of cluster randomization.
Describe the benefits and disadvantages of cluster randomization versus individual-level randomization for the proposed research. Cluster randomization should be substantiated by a sound theoretical and conceptual framework that describes the hypothesized causal pathway (see CI-1). Cluster randomization generally is applicable in the following instances:

- An intervention is delivered at the cluster level.
- An intervention changes the physical or social environment.
- An intervention involves group processes.
- An intervention cannot be delivered without a serious risk of contamination.

Logistical considerations can also justify cluster randomization, for example to reduce costs or to improve participation, adherence, or administrative feasibility.

RC-3: Power and sample size estimates must use appropriate methods to account for the dependence of observations within clusters and the degrees of freedom available at the cluster level.
The methods used to reflect dependence should be clearly described. Sources should be provided for the methods and for the data used to estimate the degree of dependence. Sensitivity analyses incorporating different degrees of dependence must be reported. For simpler designs, the dependence in the data can be reflected in the intraclass correlation. Dependence can also be reflected in variance components. Other factors that affect the power calculation and should be described include the design of the study, the magnitude of the hypothesized intervention effect, the prespecified primary analysis, and the desired Type I error rate.

RC-4: Data analyses must account for the dependence of observations within clusters regardless of its magnitude.
Data analyses must also reflect the degrees of freedom available at the cluster level. Investigators must propose appropriate methods for data analyses with citations and sufficient detail to reproduce the analyses.

RC-5: Stratified randomization should be used when feasible.
Because cluster randomization trials often involve a limited number of groups or clusters, stratified randomization should be considered and is recommended when feasible. If not feasible, justification should be provided for the use of other methods. The recommended stratification factors are those that are expected to be strongly correlated with the outcome or with the delivery of the intervention, such as baseline value of the outcome variable, cluster size, and geographic area.

Only a limited number of confounders can be addressed through stratification. Other variables, particularly those that characterize the context, should be measured and assessed to document their potential influence on the outcome and understanding of heterogeneity of results.

Rationale for These Standards
Conventional randomized trials allocate individual patients to two or more comparison groups. This is a preferred approach for eliminating systematic differences in the characteristics of the patients in the comparison groups. Randomization of individual patients is ideally suited for studies in which the clinical interventions are standardized and would be expected to have little variation in their delivery to all patients (such as medications). However, many clinical interventions are more complex and depend on decisions, interactions, and processes affected by patients, their providers, and the characteristics of the setting to carry out the intervention (e.g., programs to provide coordinated care in which individual services are sequenced or tailored for individual patients). In these clinical scenarios, both the providers and the setting affect the delivery of clinical care and are an important source of variation in how the services are provided. For conducting CER of such interventions, it is important to control and/or understand the amount of variation
in care delivery within and between clusters to understand the effect of the intervention on patient outcomes.

An approach for controlling variation in the delivery of complex interventions is to change the way in which patients are randomly allocated to receive the clinical interventions being compared. Cluster randomization is an approach in which patients are grouped within units of care delivery (e.g., all patients who receive care from a particular care provider [nurse practitioner, physician, psychologist, physical therapist, etc.], team, or practice). In this approach, the unit of care delivery—rather than the individual patient—is randomized to one of the comparative arms of the study. All patients within that group (the “cluster”) are then allocated to that study arm. Cluster randomization has also been advocated as a strategy for evaluating the use of complex interventions in real-world settings in which the investigators have little impact on the fidelity of the intervention (Platt et al. 2010).

Cluster randomization has grown in popularity but is not always sufficiently justified. A 2013 systematic review of 73 cluster trials conducted in residential facilities found that only 42 percent provided explicit justification for the cluster design (Diaz-Ordaz et al. 2013). Even in cases where justification is provided, it is sometimes perfunctory and insufficient to support the choice of study design. Guidance on best practices for cluster randomized trials has been provided in published texts (Donner and Klar 2010; Murray 1998) and in recommendations developed by professional groups. The CONSORT Extension for cluster trials published in 2010 provides guidance on how specific objectives and hypotheses should be described (CONSORT 2010). These sources emphasize that a cluster design should be used only when justified by the circumstances of the clinical problem being addressed by a study.

Transparency in conception, planning, and actual conduct of the study is paramount in helping the scientific community to understand and replicate the study. Standard RC-1 is a call for transparency and explicit description of the study objectives, the clinical services being studied, and whether the interventions are targeted at the cluster or the individual level. Standard RC-2 follows on this by requiring that the choice of cluster (rather than individual) randomization is justified by the nature of the interventions being examined. Because cluster trials commonly require more participants than an individual randomized trial, proper justification is needed to address the necessity of the research to improve patient outcomes, to document patients’ interests in participation, and to ensure protection from unnecessary risks to a larger group of patients.

A challenge in the use of cluster designs is that the clinical outcomes are usually measured at the level of the individual patient, while the unit of randomization is at the cluster level, which requires more complex statistical methods (RC-3 and RC-4). When using the patient as the unit of analysis, the analytic approach must account for the clustering and the consequent correlations among the patients in each cluster. In other words, cluster randomization threatens the assumption that all patients are independent from each other. It also results in a loss of statistical power compared to an approach in which randomization was performed at the level of each individual patient.

Standard RC-3 emphasizes the importance of realistic estimates of statistical power for cluster designs. In particular, researchers should avoid using unrealistically low estimates of the degree of similarity within clusters (usually represented by the intraclass correlation coefficient). Prior studies have found that the intraclass correlation can be unexpectedly large (Verma and Le 1996; Koepsell 1998). When making power estimates for a planned cluster-based study, it is prudent to use a sufficiently large estimate of intra-cluster correlation.

Standard RC-4 addresses the need for adjustments in the analysis, if there is substantial variation in the number of individuals enrolled in the individual clusters after the completion of the study. When some clusters have small sample sizes, the effective degrees of freedom should be reduced to reflect that these clusters cannot meaningfully contribute to the analysis (Murray 1998).

Finally, stratified randomization should be used when feasible (RC-5). Cluster randomized trials often involve a limited number of clusters, which may reduce the likelihood that randomization will produce similar distributions of potential confounders across the clusters. In addition, because only a limited set of confounders can be addressed through stratification, other variables—particularly those that characterize the context of the intervention—should be measured and their potential influence on the estimates of the interventions’ effects assessed and documented in study reports.
SECTION IV: ADVANCING UNDERSTANDING AND APPROPRIATE USE OF METHODS FOR PCOR

Good research practices are a required foundation for high-quality PCOR. One of the most important components of good practices is a commitment to transparency, which enables other researchers to assess the reproducibility and validity of findings. Many of the PCORI Methodology Standards promote transparency by requiring detailed protocols before beginning the research and compliance with guidelines when results are reported. These requirements help PCORI and others judge the quality and relevance of the research and help protect against practices—such as selective reporting—that can distort or misrepresent research results (Chan et al. 2014; Glasziou et al. 2014).

PCORI uses a comprehensive, coordinated approach to promote the wide use of its methodology standards. Strategies to support adoption include engaging a broad range of stakeholders who use or might use the standards; collaborating with other organizations and initiatives to strengthen research practices and facilitate use of the standards; using reporting and surveillance mechanisms; and offering multiple resources, including in-person and web-based training opportunities. Other initiatives include outreach to both professional and public audiences to promote use and adoption of best practices for PCOR.

PCORI has a commitment to evaluate and update the guidance that it provides to the research community. In its ongoing work, PCORI’s Methodology Committee follows a process to update, refine, and expand the scope of its methodological guidance in areas where minimum standards can strengthen PCOR questions and approaches. The Methodology Committee is currently undertaking work to develop methodology standards in a number of areas, including complex interventions, individual participant data and network meta-analysis, data quality and management, and qualitative and mixed methods. Consistent with this work and advances in research methodology, future editions of the Methodology Report and Standards will provide updated methodological guidance for PCOR, supporting the generation of high-quality and relevant evidence that patients, clinicians, and other stakeholders need to make informed health decisions.
APPENDIX A: PCORI METHODOLOGY STANDARDS

1: STANDARDS FOR FORMULATING RESEARCH QUESTIONS

RQ-1: Identify gaps in evidence.
Gaps in the evidence identified in current systematic reviews should be used to support the need for a proposed study. If a systematic review is not available, one should be performed using accepted standards in the field (see SR-1), or a strong rationale should be presented for proceeding without a systematic review. If the proposed evidence gap is not based on a systematic review, the methods used to review the literature should be explained and justified.

RQ-2: Develop a formal study protocol.
Researchers should develop a formal protocol that provides the plan for conducting the research. The protocol should specify the research objectives, study design, exposures and outcomes, and analytical methods in sufficient detail to support appropriate interpretation and reporting of results. Protocols should be submitted to the appropriate registry (e.g., clinicaltrials.gov), and all amendments and modifications (e.g., changes in analytic strategy, changes in outcomes) should be documented.

RQ-3: Identify specific populations and health decision(s) affected by the research.
To produce information that is meaningful and useful to people when making specific health decisions, research proposals and protocols should describe (1) the specific health decision the research is intended to inform, (2) the specific population(s) for whom the health decision is pertinent, and (3) how study results will inform the health decision.

RQ-4: Identify and assess participant subgroups.
In designing studies, researchers should identify participant subgroups, explain why they are of interest, and specify whether subgroups will be used to test a hypothesis or for exploratory analysis, preferably based on prior data. A study should have adequate precision and power if conclusions specific to these subgroups will be reported.

RQ-5: Select appropriate interventions and comparators.
The interventions and comparators should correspond to the actual healthcare options for patients, providers, and caregivers who would face the healthcare decision. The decision should be of critical importance to the relevant decision makers, and one for which there is a compelling need for additional evidence about the benefits and harms associated with the different options. Researchers should fully describe what the comparators are and why they were selected, describing how the chosen comparators represent appropriate interventions in the context of the relevant causal model (CI-1), reduce the potential for biases, and allow direct comparisons. Generally, usual care or nonuse comparator groups should be avoided unless these represent legitimate and coherent clinical options.

RQ-6: Measure outcomes that people representing the population of interest notice and care about.
Identify and include outcomes the population of interest notices and cares about (e.g., survival, functioning, symptoms, health-related quality of life) and that inform an identified health decision. Define outcomes clearly, especially for complex conditions or outcomes that may not have established clinical criteria. Provide information that supports the selection of outcomes as meeting the criteria of “patient centered” and “relevant to decision makers,” such as patient and decision-maker input from meetings, surveys, or published studies. Select outcomes that reflect both beneficial and harmful effects, based on input from patient informants and people representative of the population of interest.
2: STANDARDS ASSOCIATED WITH PATIENT CENTEREDNESS

PC-1: Engage people representing the population of interest and other relevant stakeholders in ways that are appropriate and necessary in a given research context.

Include individuals affected by the condition and, as relevant, their surrogates and/or caregivers. Other relevant stakeholders may include, but are not limited to, clinicians, purchasers, payers, industry, hospitals, health systems, policy makers, and training institutions. These stakeholders may be end users of the research or be involved in healthcare decision making.

As applicable, researchers should describe how stakeholders will be identified, recruited, and retained and the research processes in which they will be engaged. Researchers should provide a justification in proposals and study reports if stakeholder engagement is not appropriate in any of these processes.

PC-2: Identify, select, recruit, and retain study participants representative of the spectrum of the population of interest and ensure that data are collected thoroughly and systematically from all study participants.

Research proposals and subsequent study reports should describe the following:

- The plan to ensure representativeness of participants
- How participants are identified, selected, recruited, enrolled, and retained in the study to reduce or address the potential impact of selection bias
- Efforts employed to maximize adherence to agreed-on enrollment practices
- Methods used to ensure unbiased and systematic data collection from all participants

If the population of interest includes people who are more difficult to identify, recruit, and/or retain than other study populations (e.g., individuals historically underrepresented in healthcare research such as those with multiple disease conditions, low literacy, low socioeconomic status, or poor healthcare access, as well as racial and ethnic minority groups and people living in rural areas), then specify plans to address population-specific issues for participant identification, recruitment, and retention.

PC-3: Use patient-reported outcomes when patients or people at risk of a condition are the best source of information for outcomes of interest.

To measure outcomes of interest identified as patient-centered and relevant to decision makers (see RQ-6) for which patients or people at risk of a condition are the best source of information, the study should employ patient-reported outcome (PRO) measures and/or standardized questionnaires with appropriate measurement characteristics for the population being studied. In selecting PRO measures for inclusion in a study, researchers, in collaboration with patient and other stakeholder partners, should consider (1) the concept(s) underlying each PRO measure (e.g., symptom or impairment) and how it is meaningful to, and noticed by, patients in the population of interest; (2) how the concept relates to the health decisions the study is designed to inform; (3) how the PRO measure was developed, including how patients were involved in the development; and (4) evidence of measurement properties including content validity, construct validity, reliability, responsiveness to change over time, and score interpretability, including meaningfulness of score changes in the population of interest with consideration of important subgroups as well as the translation process if the measure is to be used in multiple languages. If these measurement properties are not known, a plan for establishing the properties must be provided. Caregiver reports may be appropriate if the patient cannot self-report the outcomes of interest.

PC-4: Support dissemination and implementation of study results.

All study results must be made publicly available. Study objectives and results should be presented in lay language summaries so they are understandable and actionable by as many people as possible. For study results that are appropriate for dissemination and implementation, involve patients and other relevant stakeholders in (1) planning for dissemination from the start of the research study, (2) creating a dissemination plan for the study indicating clinical implications, (3) working with patients or organizations to report results in a manner understandable to and usable by each target audience, and (4) identifying successful strategies for the adoption and distribution of study findings to targeted patient and clinical audiences.
3: STANDARDS FOR DATA INTEGRITY AND RIGOROUS ANALYSES

IR-1: A priori, specify plans for quantitative data analysis that correspond to major aims.
Before analysis is undertaken, researchers should describe the analytic approaches that will be used to address the major research aims. These include definitions of key exposures, outcomes, and covariates. As applicable, study protocols should identify patient subgroups of interest, plans (if any) for how new subgroups of interest will be identified, and how analysis plans may be adapted based on changing needs and scientific advances. Researchers should also specify plans for handling missing data and assessing underlying assumptions, operational definitions, and the robustness of their findings (e.g., sensitivity analyses).

IR-2: Assess data source adequacy.
In selecting data sources and planning for data collection, researchers should ensure the robust capture of exposures or interventions, outcomes, and relevant covariates. Measurement properties of exposures and outcomes should be considered, and properties of important covariates should be taken into account when statistically adjusting for covariates or confounding factors.

IR-3: Describe data linkage plans, if applicable.
For studies involving linkage of patient data from two or more sources (including registries, data networks, and others), describe (1) the data sources and/or the linked data set in terms of its appropriateness, value, and limitations for addressing specific research aims; (2) any additional requirements that may influence successful linkage, such as information needed to match patients, selection of data elements, and definitions used; and (3) the procedures and algorithm(s) employed in matching patients, including the success, limitations, and any validation of the matching algorithm(s).

IR-4: Document validated scales and tests.
Studies should include documentation of the names of the scales and tests selected, reference(s), characteristics of the scale, and psychometric properties.

IR-5: Provide sufficient information in reports to allow for assessments of the study’s internal and external validity.
Reporting guidelines for specific designs can be found at the EQUATOR Network website (www.equator-network.org). This website lists all reporting guidelines that have been developed using formal approaches, many of which have been adopted by journals, such as CONSORT (for randomized clinical trials), STARD (for diagnostic tests), STROBE (for observational studies), and SRQR and/or COREQ (studies using qualitative research). Researchers should register their studies with the appropriate registry (e.g., clinicaltrials.gov for clinical studies or observational outcomes studies) and provide complete and accurate responses to the information requested (e.g., enter the required and optional data elements for clinicaltrials.gov).

IR-6: Masking should be used when feasible.
Masking (also known as blinding) of research staff should be implemented, especially in situations for which study participant and investigator masking are not feasible. When masking is not feasible, the impact of lack of masking on the results should be discussed.
4: STANDARDS FOR PREVENTING AND HANDLING MISSING DATA

MD-1: Describe methods to prevent and monitor missing data.
Investigators should explicitly state potential reasons that study data may be missing. Missing data can occur from patient dropout, nonresponse, data collection problems, incomplete data sources, and/or administrative issues. As relevant, the protocol should include the anticipated amount of and reasons for missing data, plans to prevent missing data, and plans to follow up with study participants. The study protocol should contain a section that addresses steps taken in study design and conduct to monitor and limit the impact of missing data. This standard applies to all study designs for any type of research question.

MD-2: Use valid statistical methods to deal with missing data that properly account for statistical uncertainty due to missingness.
Valid statistical methods for handling missing data should be prespecified in study protocols. The analysis should explore reasons for missing data and assess the plausibility of the assumptions associated with the statistical methods. The potential impact of missing data on the results and limitations of the approaches used to handle the missing data should be discussed.

Valid statistical methods for handling missing data should be prespecified in study protocols. The analysis should explore reasons for missing data and assess the plausibility of the assumptions associated with the statistical methods. The potential impact of missing data on the results and limitations of the approaches used to handle the missing data should be discussed.

Estimates of treatment effects or measures of association should be based on statistical inference procedures that account for statistical uncertainty attributable to missing data. Methods used for imputing missing data should produce valid confidence intervals and permit unbiased inferences based on statistical hypothesis tests. Bayesian methods, multiple imputation, and various likelihood-based methods are valid statistical methods for dealing with missing data. Single imputation methods, such as last observation carried forward, baseline observation carried forward, and mean value imputation, are discouraged as the primary approach for handling missing data in the analysis. If single imputation-based methods are used, investigators must provide a compelling scientific rationale as to why the method is appropriate. This standard applies to all study designs for any type of research question.

MD-3: Record and report all reasons for dropout and missing data, and account for all patients in reports.
Whenever a participant drops out of a research study, the investigator should document the following: (1) the specific reason for dropout, in as much detail as possible; (2) who decided that the participant would drop out; and (3) whether the dropout involves participation in all or only some study activities. Investigators should attempt to continue to collect information on key outcomes for participants unless consent is withdrawn. All participants included in the study should be accounted for in study reports, regardless of whether they are included in the analyses. Any planned reasons for excluding participants from analyses should be described and justified. In addition, missing data due to other mechanisms (such as nonresponse and data entry/collection) should be documented and addressed in the analyses.

MD-4: Examine sensitivity of inferences to missing data methods and assumptions, and incorporate into interpretation.
Examining sensitivity to the assumptions about the missing data mechanism (i.e., sensitivity analysis) should be a mandatory component of the study protocol, analysis, and reporting. This standard applies to all study designs for any type of research question. Statistical summaries should be used to describe missing data in studies, including a comparison of baseline characteristics of units (e.g., patients, questions, or clinics) with and without missing data. These quantitative results should be incorporated into the interpretation of the study and reflected in the discussion section and, when possible, the abstract of any reports.
5: STANDARDS FOR HETEROGENEITY OF TREATMENT EFFECTS (HTE)

HT-1: State the goals of HTE analyses, including hypotheses and the supporting evidence base.
State the inferential goal of each HTE analysis, and explain how it is related to the topic of the research. Specify whether the HTE analysis is hypothesis driven (sometimes denoted as confirmatory), or hypothesis generating (sometimes denoted as exploratory). Hypothesis-driven HTE analyses should be prespecified, based on prior evidence (described clearly in the study protocol and study reports), and supported by a clear statement of the hypotheses the study will evaluate, including how subgroups will be defined (e.g., by multivariate score or stratification), outcome measures, and the direction of the expected treatment effects.

HT-2: For all HTE analyses, provide an analysis plan, including the use of appropriate statistical methods.
The study protocol should unambiguously prespecify planned HTE analyses. Appropriate methods include, but are not limited to, interaction tests, differences in treatment effect estimates with standard errors, or a variety of approaches to adjusting the estimated subgroup effect, such as Bayesian shrinkage estimates. Appropriate methods should be used to account for the consequences of multiple comparisons; these methods include, but are not limited to, p-value adjustment, false discovery rates, Bayesian shrinkage estimates, adjusted confidence intervals, or validation methods (internal or external).

HT-3: Report all prespecified HTE analyses and, at minimum, the number of post-hoc HTE analyses, including all subgroups and outcomes analyzed.
Both protocols and study reports must report the exact procedures used to assess HTE, including data mining or any automatic regression approaches. HTE analyses should clearly report the procedures by which subgroups were defined and the effective number of subgroups and outcomes examined. Within each subgroup level, studies should present the treatment effect estimates and measures of variability. Prespecified HTE analyses (hypothesis driven) should be clearly distinguished from post-hoc HTE analyses (hypothesis generating). Statistical power should be calculated and reported for prespecified (hypothesis-driven) analyses.

6: STANDARDS FOR DATA REGISTRIES

DR-1: Requirements for the design of registries
Registries established for conducting patient-centered outcomes research (PCOR) must have the following characteristics:

A. Registry Purpose and Protocol. The purpose of the registry should be clearly defined to guide the design of key registry features including, but not limited to, the target population, the research question(s) to be addressed, the data source used, the data elements collected, data sharing policies, and the stakeholders involved in the development and use of the registry. Participants and other key stakeholders should be engaged in registry design and protocol development. Registries should aim to be user oriented in design and function.

B. Data Safety and Security. Registry custodians should comply with institutional review board (IRB) human subjects protection requirements, the HIPAA Privacy Rule, and all other applicable local, state, and national laws. Registries should provide information describing the type of data collection (primary or secondary source data), data use agreements (DUAs), informed consent documents, data security protections, plans for maintaining data protection if the registry ends, and approaches to protecting privacy, including risk of and/or process for re-identification of participants, especially for medical or claims records.

C. Data Elements and Quality. Standardized data element definitions and/or data dictionaries should be used whenever possible. When creating a new registry, published literature should be reviewed to identify existing, widely used definitions of outcomes, exposures, and confounders before drafting new definitions.

When collecting primary data, conduct multistakeholder engagement with potential participants and data users to prioritize data collection needs. When participants support their face validity, use validated instruments or PRO measures when available. If secondary data sources (e.g., electronic medical records, claims data) are used, describe the original purpose of the secondary data and verify the accuracy and completeness of the data, as well
as the approach to and validity of the linkages performed between the primary and secondary sources.

The specifics of the quality assurance plan will depend on the type of data (primary or secondary) collected by the registry. In general, the plan should address (1) structured training tools for data abstractors/curators; (2) the use of data quality checks for ranges and logical consistency for key exposure and outcome variables and covariates; and (3) data review and verification procedures, including source data verification plans (where feasible and appropriate), and validation statistics focused on data quality for the key exposure and outcome variables and key covariates. A risk-based approach to quality assurance, focused on variables of greatest importance, is advisable.

D. Confounding. Registries should identify important potential confounders pertinent to the purpose and scope of the research during the planning phase and collect reasonably sufficient data on these potential confounders to facilitate the use of appropriate statistical techniques during the analysis phase. When conducting analyses, refer to the PCORI Methodology Standards for Data Integrity and Rigorous Analyses and Standards for Causal Inference Methods.

E. Systematic Participant Recruitment and Enrollment. Develop a sampling plan of the target population and identify recruitment strategies for participants that minimize the impact of selection bias. Participants should be enrolled systematically, with similar procedures implemented at all participating sites and for each intervention of interest. Confirm adherence to agreed-upon enrollment practices.

F. Participant Follow-Up. The objective(s) of the registry should determine the type, extent, and length of participant follow-up.

Describe the frequency with which follow-up measures will be ascertained, consider linkage with other data sources (e.g., the National Death Index) to enhance long-term follow-up, and identify the date of last contact with the participant in existing registries, where appropriate. Ensure that the participants are followed in as unbiased a manner as possible, using similar procedures at all participating sites.

Monitor loss to follow-up to ensure best efforts are used to achieve follow-up time that is adequate to address the main objective. At the outset of the registry, develop a retention plan that documents when a participant will be considered lost to follow-up and which actions will be taken to minimize loss of pertinent data. Retention efforts should be developed with stakeholders to ensure the efforts are suitable for the target population and anticipated challenges are addressed appropriately.

DR-2: Documentation and reporting requirements of registry materials, characteristics, and bias
Clearly describe, document with full citations where appropriate, and make publicly available registry materials including, but not limited to, registry protocols, data-sharing policies, operational definitions of data elements, survey instruments used, and PROs captured. Modifications to any documents or data collection instruments should be clearly described and made available for registry users and participants. Characteristics of the participants in the registry should be described. Identify how the participants may differ from the target population to help assess potential selection biases. Document the loss to follow-up and describe the impact on the results, using sensitivity analyses (prespecified where possible) to quantify possible biases. Report the extent of bias clearly to stakeholders who may want to use the registry resource.

DR-3: Adapting established registries for PCOR
Previously established registries that intend to support new clinical research may not have been informed by all applicable methodology standards. When new research will use such registries, investigators should engage key stakeholders, including registry participants, to assess the feasibility of using the registry for new research and ensure the following:

- Informed consent documents are appropriately tailored to participant needs, characteristics, and conditions.
- Data elements are meaningful and useful to researchers and participants.
- Recruitment and retention strategies are feasible and effective.
- Registry policies are patient centered and the use of registry data is transparent to participants.
- Dissemination practices are appropriate and effective at reaching the communities from which the data are collected.
- Opportunities for bidirectional benefit exist between participants and researchers.
- Registry materials, described in DR-2, and informed consent forms are publicly available in accessible formats.
DR-4: Documentation requirements when using registry data
Researchers planning PCOR studies that rely on registries must ensure that these registries meet the requirements contained in Standards **DR-1** and **DR-2** and must document each required feature of each registry to be used (e.g., in an appendix to the funding application or study protocol). Deviations from the requirements with Standards DR-1 and DR-2 should be well documented and limitations of research related to the deviations from requirements should be addressed when reporting study findings.

7: STANDARDS FOR DATA NETWORKS AS RESEARCH-FACILITATING STRUCTURES

DN-1: Requirements for the design and features of data networks
Data networks established for conducting PCOR must have the following characteristics to facilitate valid, useable data and to ensure appropriate privacy, confidentiality, and intellectual property (IP) protections:

A. **Data Integration Strategy.** In order for equivalent data elements from different sources to be harmonized (treated as equivalent), processes should be created and documented that either (1) transform and standardize data elements prior to analysis or (2) make transformation logic (including code and process documentation) available that can be executed when data are extracted. The selected approach should be based on an understanding of the research domain of interest.

B. **Risk Assessment Strategy.** Data custodians should measure the risk of re-identification of data and apply algorithms to ensure that the desired level of confidentiality is achieved to meet the need of the particular PCOR application. Data custodians should ensure that data privacy/consents of the original data source cover the intended usage of the data through the data network. Privacy protections, including which data will be released and how breaches are addressed, should be specified in the data use agreement. The physical security of the data and data platforms should be considered and addressed as well.

C. **Identity Management and Authentication of Individual Researchers.** Develop reliable processes for verifying and authenticating the credentials of researchers who are granted access to a distributed research network.

D. **IP Policies.** A research network should develop policies for the handling and dissemination of IP; networks should also have an ongoing process for reviewing and refreshing those policies. IP can include data, research databases, papers, reports, patents, and/or products resulting from research using the network. Guidelines should balance (1) minimizing impediments to innovation in research processes and (2) making the results of research widely accessible, particularly to the people who need them the most.

E. **Standardized Terminology Encoding of Data Content.** The data content should be represented with a clearly specified standardized terminology system to ensure that their meaning is unambiguously and consistently understood by parties using the data.

F. **Metadata Annotation of Data Content.** Semantic and administrative aspects of data contents should be annotated with a set of metadata items. Metadata annotation helps to correctly identify the intended meaning of a data element and facilitates an automated compatibility check among data elements.

G. **Common Data Model.** Individual data items should be organized into a standard structure that establishes common definitions and shows close or distant associations among variables. A common data model specifies necessary data items that need to be collected and shared across participating institutes, clearly represents the associations and relationships among data elements, and promotes correct interpretation of the data content.

DN-2: Selection and use of data networks
Researchers planning PCOR studies that rely on data networks must ensure that these networks meet the requirements contained in **DN-1**, and they must document the current maintenance status of the data network (e.g., currency of the data, level of data curation). Because different studies are expected to have different dependencies on various components of the data network, researchers should assess the appropriateness of the data in the network for a specific research study through the following activities:

APPENDIX A: PCORI METHODOLOGY STANDARDS
A. Data content and conformance. Document what is actually needed for the research question and compare that to the sources in the network. Identify which data are best represented by the network's data sources and how they are included in the study. Ensure that the representations and values of the data to be used from the network are sufficient for addressing the research question.

B. Data quality. Assess the data quality for the data sources that will be used. It is especially important to assess data completeness and plausibility. Where data are incomplete, identify and assess potential biases for completeness and consider alternate sources. Assess plausibility by reviewing data value distributions and comparing additional data sources that would have expected concordance with the selected sources. Determine whether the data sources are of sufficient quality to be included in the analysis.

C. Sensitivity analyses. After the initial analysis is completed, perform sensitivity analyses on the data sources to test whether possible variations in data characteristics would affect the conclusions of the analysis. Specifically, measure the sensitivity of the conclusions to the following:

- Completeness and correctness of the data in the data network
- Availability of data sources that are most likely at risk of exclusion
- Temporal dependence of the data
- Operational definitions and decisions made to implement analysis

The results of these assessments should be documented and included with any findings from research studies using the data networks.

8: STANDARDS FOR CAUSAL INFECTION METHODS

CI-1: Specify the causal model underlying the research question (cross-cutting standard, applies to all PCOR/CER studies). Researchers should describe the causal model relevant to the research question, which should be informed by the PICOTS framework: populations, interventions, comparators, outcomes, timing, and settings. The causal model represents the key variables; the known or hypothesized relationships among them, including the potential mechanisms of effect; and the conditions under which the hypotheses are to be tested. Researchers should use the causal model to determine whether and how the study can handle bias and confounding and the extent to which valid estimates of the effects of an intervention can be generated given the particular hypothesis, study design, analytical methods, and data source(s).

CI-2: Define and appropriately characterize the analysis population used to generate effect estimates. Researchers should specify the eligibility criteria for inclusion in the study population and analysis. Decisions about which patients are included in an analysis should be based on information available at each patient's time of study entry in prospective studies or on information from a defined time period prior to the exposure in retrospective studies. For time-varying treatment or exposure regimes, specific time points should be clearly specified; relevant variables measured at baseline and up to, but not beyond, those time points should be used as population descriptors. When conducting analyses that in some way exclude patients from the original study population, researchers should describe the final analysis population that gave rise to the effect estimate(s), address selection bias that may be introduced by excluding patients, and assess the potential impact on the validity of the results.

CI-3: Define with the appropriate precision the timing of the outcome assessment relative to the initiation and duration of exposure. To reduce potential sources of bias arising from inappropriate study design choices (e.g., immortal time bias), researchers must precisely define, to the extent possible, the timing of the outcome assessment relative to the initiation and duration of the exposure.

CI-4: Measure potential confounders before start of exposure and report data on potential confounders with study results. In general, variables used in confounding adjustment (either in the design or analysis) should be ascertained and...
measured prior to the first exposure to the interventions (or intervention) under study. If confounders are time varying, specific time points for the analysis of the exposure effect should be clearly specified and the confounder history up to, and not beyond, those time points should be used in that analysis.

CI-5: Report the assumptions underlying the construction of propensity scores and the comparability of the resulting groups in terms of the balance of covariates and overlap.
When conducting analyses that use propensity scores to adjust for measured confounding, researchers should consider and report how propensity scores will be created (high dimensional propensity score versus a priori clinical variables) and which balancing method will be used (e.g., matching, weighting, or stratification). Researchers should assess and report the overlap and balance achieved across compared groups with respect to potential confounding variables.

CI-6: Assess the validity of the instrumental variable (i.e., how the assumptions are met) and report the balance of covariates in the groups created by the instrumental variable.
When an instrumental variable (IV) approach is used (most often to address unmeasured confounding), empirical evidence should be presented that describes how the variable chosen as an IV satisfies the three key properties of a valid instrument: (1) the IV influences the choice of intervention or is associated with a particular intervention because both have a common cause; (2) the IV is unrelated to patient characteristics that are associated with the outcome; and (3) the IV is not otherwise related to the outcome under study (i.e., it does not have a direct effect on the outcome apart from its effect through exposure).

9: STANDARDS FOR ADAPTIVE AND BAYESIAN TRIAL DESIGNS

AT-1: Specify planned adaptations, decisional thresholds, and statistical properties of those adaptations.
The adaptive clinical trial design must be prospectively planned and the design must be clearly documented in the study protocol before trial enrollment begins, including at a minimum the following:

- All potential adaptations, including timing
- Interim trial findings that will be used in determining each adaptation
- Statistical models and decisional thresholds to be used
- Planned analyses of the trial endpoint(s)

The description of the design should be sufficiently detailed that it could be implemented based on the description of procedures. This specification should include a statistical analysis plan in which all necessary detail is provided regarding planned interim and final analyses.

Additionally, the statistical properties of adaptive clinical trial designs should be thoroughly investigated over the relevant range of important parameters or clinical scenarios (e.g., treatment effects, accrual rates, delays in the availability of outcome data, dropout rates, missing data, drift in participant characteristics over time, subgroup-treatment interactions, or violations of distributional assumptions). Statistical properties to be evaluated should include Type I error, power, and sample size distributions, as well as the precision and bias in the estimation of treatment effects.

AT-2: Specify the structure and analysis plan for Bayesian adaptive randomized clinical trial designs.
If a Bayesian adaptive design is proposed, the Bayesian structure and analysis plan for the trial must be clearly and completely specified. This should include any statistical models used either during the conduct of the trial or for the final analysis, prior probability distributions and their basis, utility functions associated with the trial's goals, and assumptions regarding exchangeability (of participants, of trials, and of other levels). Specific details should be provided as to how the prior distribution was determined and if an informative or noninformative prior was chosen. When an informative prior is used, the source of the information should be described. If the prior used during the design phase is different from the one used in the final analysis, then the rationale for this approach should be indicated. Computational issues should be addressed, including describing the choice of software, the creation and testing of custom software, and software validation. Software used for Bayesian calculations during trial design, trial execution, and final analysis must be functionally equivalent. When feasible, software or other computing packages should be made available to relevant stakeholders for evaluation and validation.
AT-3: Ensure that clinical trial infrastructure is adequate to support planned adaptation(s) and independent interim analyses.

The clinical trial infrastructure, including centralized randomization, data collection related to the assessment and recording of key outcomes, data transmission procedures, and processes for implementing the adaptation (e.g., centralized, web-based randomization), must be able to support the planned trial. In simple adaptive trials, qualitative verification of the capabilities of the proposed trial infrastructure may be adequate. Trials with more complicated requirements, such as frequent interim analyses, require thorough testing prior to trial initiation. Such testing should involve the trial’s data collection and data management procedures, the implementation of the adaptive algorithm, and methods for implementing the resulting adaptation(s). The impact on the trial’s operating characteristics of delays in collecting and analyzing available outcome data should be assessed. The study plan should clarify who will perform the analyses to inform adaptation while the study is ongoing and who will have access to the results. The interim analyses should be performed and reviewed by an analytical group that is independent from the investigators who are conducting the trial. Trial investigators should remain blinded to changes in treatment allocation rates as this information provides data regarding treatment success.

AT-4: When reporting adaptive randomized clinical trials, use the CONSORT statement, with modifications.

The following sections of the 2010 CONSORT statement can be used to report key dimensions of adaptation:

- Adaptation of randomization probabilities (sections 8b and 13a)
- Dropping or adding study arms (sections 7b and 13a)
- Interim stopping for futility and superiority or adverse outcomes (sections 7b and 14b)
- Sample size re-estimation (sections 7a and 7b)
- Transitioning of stages (e.g., seamless Phase II/III designs) (sections 3a, 7a, 7b, and 16)
- Modification of inclusion and exclusion criteria (sections 4a and 13a)

CONSORT sections 16, 20, and 21 provide additional guidance on reporting aspects of an adaptive trial.

All possible adaptations included in the prospective design, even if they did not occur, should be included in the study reports.

10: STANDARDS FOR STUDIES OF MEDICAL TESTS
(formerly Standards for Studies of Diagnostic Tests)

MT-1: Specify the clinical context and key elements of the medical test.

Evaluation of tests used to inform medical decision making (e.g., diagnostic, prognostic, or predictive tests) should specify each of the following items and provide justification for the particular choices: (1) the intended use of the test and the corresponding clinical context, including referral for additional testing, referral for additional treatments, and modification of current treatment and target populations; (2) the choice of comparator (e.g., another test or no test) and goal of the comparison; (3) the technical specifications of the test(s) as implemented in the study; (4) the approach to test interpretation; (5) the sources and process for obtaining reference standard information, when applicable; (6) the procedures for obtaining follow-up information and determining patient outcomes, when applicable; and (7) the clinical pathways involving the test and the anticipated implications of test use on downstream processes of care and patient outcomes. These items ought to be specified for all types of tests used for medical decision making and for all designs, including observational designs (e.g., those using medical records or registries). If these items are not available directly, validated approaches to approximating these study elements from available data should be used.

MT-2: Assess the effect of factors known to affect performance and outcomes.

Studies of tests used to inform medical decision making should include an assessment of the effect of important factors known to affect test performance and outcomes, including, but not limited to, the threshold for declaring a “positive” test result, the technical characteristics of the test, test materials (e.g., collection, preparation, and handling of samples), operator dependence (e.g., lab quality, interpretation requirements), and the setting of care.

MT-3: Focus studies of medical tests on patient-centered outcomes, using rigorous study designs with a preference for randomized controlled trials.

A prospective randomized design should be used when possible to assess the diagnostic, prognostic, predictive, and/or therapeutic outcomes of testing. If a nonrandomized design is proposed, a rationale for using an observational study (or modeling and simulation) should be provided, and efforts to minimize confounding documented.
11: STANDARDS FOR SYSTEMATIC REVIEWS

SR-1: Adhere to National Academy of Medicine (NAM) standards for systematic reviews of comparative clinical effectiveness research, as appropriate.

Systematic reviews, which critique and synthesize the existing literature, can also identify evidence gaps and inform decisions of how to address these gaps. Existing standards for systematic reviews developed by credible authorities, such as the Cochrane Collaboration and the Agency for Healthcare Research and Quality, vary somewhat in their recommended approaches. The PCORI Methodology Committee endorses the standards issued by the NAM in 2011 but recognizes both the importance of conducting systematic reviews consistent with updates to best methodological practices and that there can be flexibility in the application of some standards without compromising the validity of the review, including the following:

- Searches for studies reported in languages other than English are not routinely recommended but may be appropriate to some topics.
- Dual screening and data abstraction are desirable, but fact-checking may be sufficient. Quality control procedures are more important than dual review per se.
- Independent librarian peer review of the search strategy is not required; internal review by experienced researchers is sufficient.

Researchers should describe and justify any departures from the 2011 NAM standards (e.g., why a particular requirement does not apply to the systematic review).

12: STANDARDS ON RESEARCH DESIGNS USING CLUSTERS

RC-1: Specify whether the study objectives, the interventions, and the primary outcomes pertain to the cluster level or the individual level.

Describe (1) the target population of clusters and individuals to which the study findings will be generalizable and (2) the clusters to be randomized and the subjects to be enrolled in the trial.

RC-2: Justify the choice of cluster randomization.

Describe the benefits and disadvantages of cluster randomization versus individual-level randomization for the proposed research. Cluster randomization should be substantiated by a sound theoretical and conceptual framework that describes the hypothesized causal pathway (see CI-1). Cluster randomization generally is applicable in the following instances:

- An intervention is delivered at the cluster level.
- An intervention changes the physical or social environment.
- An intervention involves group processes.
- An intervention cannot be delivered without a serious risk of contamination.

Logistical considerations can also justify cluster randomization, for example to reduce costs or to improve participation, adherence, or administrative feasibility.

RC-3: Power and sample size estimates must use appropriate methods to account for the dependence of observations within clusters and the degrees of freedom available at the cluster level.

The methods used to reflect dependence should be clearly described. Sources should be provided for the methods and for the data used to estimate the degree of dependence. Sensitivity analyses incorporating different degrees of dependence must be reported. For simpler designs, the dependence in the data can be reflected in the intraclass correlation. Dependence can also be reflected in variance components. Other factors that affect the power calculation and should be described include the design of the study, the magnitude of the hypothesized intervention effect, the prespecified primary analysis, and the desired Type I error rate.

RC-4: Data analyses must account for the dependence of observations within clusters regardless of its magnitude.

Data analyses must also reflect the degrees of freedom available at the cluster level. Investigators must propose
appropriate methods for data analyses with citations and sufficient detail to reproduce the analyses.

RC-5: Stratified randomization should be used when feasible.
Because cluster randomization trials often involve a limited number of groups or clusters, stratified randomization should be considered and is recommended when feasible. If not feasible, justification should be provided for the use of other methods. The recommended stratification factors are those that are expected to be strongly correlated with the outcome or with the delivery of the intervention, such as baseline value of the outcome variable, cluster size, and geographic area.

Only a limited number of confounders can be addressed through stratification. Other variables, particularly those that characterize the context, should be measured and assessed to document their potential influence on the outcome and understanding of heterogeneity of results.
APPENDIX B: RESPONSE TO PUBLIC COMMENT

To promote transparency, meet legislative mandates, and increase the usefulness of the PCORI Methodology Standards, we use a formal process to solicit input from stakeholders. In preparing the recent update, we solicited public comments on a draft of the standards from January 25, 2016, through April 11, 2016.

We received comments from a broad spectrum of stakeholders, including patients, caregivers, hospitals and health systems, industry, health researchers, and professional organizations. We thank the individuals and organizations that took time to provide the many thoughtful and meaningful suggestions.

After the comment period, the PCORI Methodology Committee and staff considered the submitted comments and made additional revisions to the updated standards, as well as to the PCORI Methodology Report. The updated standards were adopted by PCORI's Board of Governors and posted at www.pcori.org in May 2017. The updated Methodology Report was posted in July 2017.

The table below displays all the public comments we received on the draft version of the updated standards. These comments have not been edited and are displayed in the table as they were submitted. The table also lists the stakeholder affiliation of the submitters (e.g., patient or health researcher) and our responses to each of the comments, including revisions to the standards or report.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Stakeholder Group</th>
<th>Comment (as submitted to PCORI)</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ-1</td>
<td>Health researcher</td>
<td>Specifically regarding the statement “in the case where a systematic review is not possible, the methods used to review the literature should be explained and justified”: it would be interesting to suggest that these methods should follow as many as possible among the components specified under the Methods section of the PRISMA statement http://goo.gl/BijVhu</td>
<td>The wording in RQ-1 has been revised. Text explaining that researchers should describe and justify the approach employed to identify the evidence gap—including any departures from relevant standards for conducting and reporting systematic reviews—has been added.</td>
</tr>
<tr>
<td></td>
<td>Caregiver/Family member of patient</td>
<td>Identification of gaps in the evidence is imperative, specially those who have excluded women, children and the elderly. However, ideally evidence-base also should include socio-economic and psychological aspects of the population.</td>
<td>The text has been revised to highlight that differences across populations can be an appropriate domain for defining an evidence gap that would be addressed by new research.</td>
</tr>
<tr>
<td></td>
<td>Caregiver/Family member of patient</td>
<td>That in'thgss just what I've been looking for. Thanks!</td>
<td>Thank you for this positive feedback.</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>The last sentence now reads: “In the case where a systematic review is not possible......”. Is a systematic review ever not possible? Even is the evidence for something is sparse, it can still be systematically reviewed. Consider replacing “possible” with “done”. (EBort)</td>
<td>Thank you for this suggestion. The standard has been revised.</td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>For rare diseases a systematic review is seldom available. This puts undo demand on investigators in a under investigated area.</td>
<td>We have revised the standard to allow researchers to describe how the gap in knowledge was identified and justified.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RQ-1</td>
<td>Stakeholder - Other</td>
<td>As proposed, the call to use ‘analysis of gaps in the evidence based on systematic reviews’ is much more complex than the requirement in the prior version of the Standard. Given the increased emphasis on using systematic reviews to identify evidence gaps as well as to ensure that PCORI’s documents are as useful and accessible as possible, PCORI should consider making available on its website the best sources of systematic reviews, such as Cochrane, formally known as the Cochrane Collaboration (http://www.cochrane.org/) and Canada’s Health Systems Evidence (https://www.healthsystemsevidence.org/), so researchers have a more solid foundation from which to begin their study. Furthermore, when conducting systematic reviews, the central issue is not necessarily about what is possible, but what is useful and worthwhile. Therefore, we propose that the last sentence be: “In cases where incremental systematic reviews may not be useful over existing literature or in which the effort needed is not worthwhile, the methods used to review the literature should be explained and justified.” Thank you. We will consider adding links in future materials for researchers and applicants. The standard and text have been revised.</td>
<td></td>
</tr>
<tr>
<td>RQ-2</td>
<td>Health researcher</td>
<td>Given that the EQUATOR NETWORK http://www.equator-network.org/ currently has a number of design-specific standards, it might be interesting to recommend a few of those when study protocols are formulated. Examples could include CONSORT, STROBE, PRISMA, COREQ, STARD, SQUIRE AND CHEERS Thank you. The EQUATOR Network is referenced in the text of the Methodology Report and in Standard IR-5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caregiver/ Family member of patient</td>
<td>That is/thiss just what I've been looking for. Thanks! Thank you.</td>
<td>Thank you.</td>
</tr>
<tr>
<td>RQ-3</td>
<td>Health researcher</td>
<td>Given the abundance of epidemiological data on a variety of conditions, it might be interesting to suggest that citations be based on primary rather than secondary sources. Examples of primary sources might include information extracted from raw data, Web sites where datasets can be directly queried (see http://cancerstatisticscenter.cancer.org/#/ for an example) or publications where epidemiological information was part of the study Results rather than just a comment. Focusing on primary sources would improve accuracy, ultimately providing readers with a better understanding of the real impact of a given project. We agree that there are situations in which primary data and sources are useful, and the text instructs researchers to rigorously justify not only the need for a new study but also the approach taken to identify the evidence gap and the potential impact of addressing it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caregiver/ Family member of patient</td>
<td>That is/thiss just what I've been looking for. Thanks! Thank you.</td>
<td>Thank you.</td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>Sometimes in behavioral studies the end point is not a decision but a behavior. I suppose you could say the decision at the end is which behavioral intervention if effective but sometimes you are only looking at effectiveness as opposed to standard care which is the norm We agree that health studies can have various endpoints, and we use the term “decision” very broadly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stakeholder - Other</td>
<td>The PICOTS typology to which PCORI refers later in its Methodology Standards is used in systematic reviews for precisely this purpose of identifying and characterizing evidence gaps from systematic reviews. Therefore, PCORI should cite the framework in this Standard and advise researchers to cite it when producing the requested information. Additionally, AcademyHealth recommends changing the word ‘population’ in the second bullet to ‘populations’ (plural) both to maintain consistency with the Standard’s title and to encompass as wide a group as necessary for a given study. The text has been revised. PICOTS is defined and offered as the basis for Standards RQ-3, RQ-4, RQ-5, and RQ-6, and “population” has been changed to “populations.”</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RQ-4</td>
<td>Health researcher</td>
<td>Of importance, the method used to reach that subgroup should be specified, so that readers can distinguish subgroup analyses where findings were derived from a well-thought clinical or policy hypothesis, versus data fishing.</td>
<td>The text of the standard and the rationale have been revised to acknowledge the different types of subgroup analyses.</td>
</tr>
<tr>
<td></td>
<td>Caregiver/Family member of patient</td>
<td>That is/this is just what I've been looking for. Thanks!</td>
<td>Thank you.</td>
</tr>
<tr>
<td></td>
<td>Stakeholder - Other</td>
<td>Within this Standard, AcademyHealth felt it was unclear whether PCORI was articulating whether researchers should not do subgroup analyses if there was not adequate precision and power to reach conclusions or whether that information should simply be reported. Clarification from PCORI on this point would be helpful. The clarification could distinguish when subgroup analyses are aimed at providing definitive advice for the effectiveness of particular interventions or when such analyses may be useful for learning more about subgroup issues and generating hypotheses for future research.</td>
<td>The text of the standard and the rationale have been revised to acknowledge the different types of subgroup analyses.</td>
</tr>
<tr>
<td></td>
<td>Health researcher</td>
<td>The researcher should make considerations regarding the availability (present or future), cost, and feasibility of its implementation under different healthcare contexts, e.g., rural areas. This point is essential in that while some interventions might potentially lead to improvement in health quality and safety, there might be a number of impediments in their implementation. Requiring researchers to reflect on those aspects will allow them to focus on potential interventions with a greater likelihood of being useful if proven effective.</td>
<td>We agree that implementation considerations are important, and we will consider incorporating this more explicitly into the methodology standards and report in the future.</td>
</tr>
<tr>
<td></td>
<td>Caregiver/Family member of patient</td>
<td>That is/this is just what I've been looking for. Thanks!</td>
<td>Thank you.</td>
</tr>
<tr>
<td>RQ-5</td>
<td>Stakeholder - Other</td>
<td>Within the new phrasing of this Standard, AcademyHealth appreciated the language on interventions and comparators, specifically the mention of health care options, feeling it was sufficiently broad. However, we would suggest altering the first sentence of RQ-5—both to include additional stakeholders and to emphasize the real-world component—to read, “Interventions and comparators included in the study should correspond to the options available to patients, providers, and caregivers.” In addition, we are concerned that the many references to “the clinical decision” exclusively results in this standard being far too limiting in its framing. Not only does PCORI use the term “health decision” in RQ-3, straying from consistent terminology, but also, particularly at the health care organization and system levels, decisions are not solely “clinical” decisions, a term which implies a narrow focus on the actions of just the clinical provider. PCORI’s priorities are far broader, and this Standard should appropriately reflect that breadth for researchers; many PCORI investigations are not directly about clinical decisions but are about particular interventions with non-clinical or clinical staff engaging with patients or families. In these cases, it often makes sense to compare this to outcomes in the absence of such engaging interventions.</td>
<td>The language in the standard has been changed. The term “clinical decision” has been revised to “healthcare decision.”</td>
</tr>
</tbody>
</table>

APPENDIX B: RESPONSE TO PUBLIC COMMENT
<table>
<thead>
<tr>
<th>Standard</th>
<th>Stakeholder Group</th>
<th>Comment (as submitted to PCORI)</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ-6</td>
<td>Health researcher</td>
<td>I believe it is important to emphasize the connection between this recommendation and PC-4: “Support dissemination and implementation of study results.” In other words, provided that measures represent something that the population of interest cares about, it needs to be clear how each and every one of these metrics will be reported back to this population. Another important connection might be 9. Standards for Adaptive Trial Designs, emphasizing that designs where analysis is conducted in parallel with data collection are encouraged, as they allow for a more immediate incorporation of study findings into healthcare and policy practice.</td>
<td>We agree that there are many connections among the standards, and we are considering ways to underscore these links in future updates and in how the standards are presented.</td>
</tr>
<tr>
<td>Caregiver/Family member of patient</td>
<td>That's just what I've been looking for. Thanks!</td>
<td>Thank you.</td>
<td></td>
</tr>
<tr>
<td>General feedback</td>
<td>Health researcher</td>
<td>Outstanding initiative, very well-formulated.</td>
<td>Thank you for this positive feedback.</td>
</tr>
<tr>
<td>Caregiver/Family member of patient</td>
<td>That's just what I've been looking for. Thanks!</td>
<td>Thank you for this positive feedback.</td>
<td></td>
</tr>
<tr>
<td>PC-1</td>
<td>Health Researcher</td>
<td>While patients' participation in different portions of the research process is certainly of interest to researchers, the benefits from a patient perspective might not be immediately obvious. It is therefore important that their participation be compensated with a reciprocal gain. This gain could be in form of information to be taken back to their community, free lectures provided by researchers with expertise in the field, or anything else that might make this collaboration feel like a fair exchange with mutual gain. The text has been revised to include a discussion about the broader values underlying the involvement of patient and other stakeholders as research partners, and it includes a reference to PCORI’s Engagement Rubric, which addresses issues of reciprocity and compensation.</td>
<td>The text has been revised to include a discussion about the broader values underlying the involvement of patient and other stakeholders as research partners, and it includes a reference to PCORI’s Engagement Rubric, which addresses issues of reciprocity and compensation.</td>
</tr>
<tr>
<td>Industry</td>
<td>The bolded print here refers to “ways that are appropriate and necessary”. This is very broad. Essentially, this will result on everyone conceivable being drawn into the process, or the investigator being compelled to offer explanations as to why some segment was not engaged. Can the authors be more specific about how one determines what groups are really appropriate and necessary for such engagement?</td>
<td>We agree: this is broad. As more evidence and best practices are generated in the field, we will make this more specific. The text providing the rationale for the standards acknowledges these limitations and provides references to early findings, including those from PCORI-funded research.</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>Patient Advocates need to be added to the stakeholders list</td>
<td>Thank you for the suggestion. The text of the standard has been revised to better indicate that the list of examples is not intended to be exhaustive.</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>We applaud the Committee on clarifying how patients and stakeholders should be involved in the prioritization of research, conduct of research, and the dissemination of research findings. As outlined in the standards, a broad set of stakeholders, including the biopharmaceutical industry, contribute to a more robust research process. Purchasers, payers, and industry communities seek to ensure that relevant questions are addressed, research findings are usable, and results are translated and implemented in practice. This engagement is an important aspect towards improving the relevance of CER questions and ultimately the impact of CER on health care decision-making.</td>
<td>Thank you for the comment.</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>PC-1</td>
<td>Stakeholder - Other</td>
<td>PCORI is faced in developing this new set of Standards with the challenge of being prescriptive without being overly directive. When describing the relevant stakeholders within this Standard, PCORI should consider changing the language to say, “Other relevant stakeholders may include but are not limited to clinicians, purchasers…” There are other stakeholder categories that may fall beyond the list identified—one example being community-based organizations working with health care systems—that researchers should also consider when determining the types of individuals who will be involved within the study and their approach to engagement. As currently written, PCORI’s list is more exclusive than illustrative. Beyond this, here PCORI defines the role of consumers or stakeholders in a manner that is appropriate in terms of a particular research project, but it does not speak to the fact that stakeholders should be involved in the research enterprise more broadly. There’s a greater role for researchers to play in engaging consumers and patients in governance and oversight processes, beyond simply the research project. AcademyHealth’s Electronic Data Methods (EDM) Forum authored a paper in 2012 (http://repository.edm-forum.org/cgi/viewcontent.cgi?article=1001&context=edm_briefs) that examines and offers insight into these issues that may be useful to PCORI for incorporating these critical concepts into its revised Methodology Standards. In addition, the final bullet regarding PCORI’s Engagement Rubric is not proportionate in level and scope with the other bullets on processes. This statement should act as a broader note within the Standard, and thereby be removed from the bulleted list. We would also raise that in the last sentence of the Standard—“If engagement is not necessary or appropriate in these processes, explain why”—it is not clear whether the intent is to note where engagement is or is not appropriate for each of the project’s components or for the project overall.</td>
<td>The text of the standard has been revised as suggested. We agree that stakeholders should be engaged in the research enterprise broadly. The standards are targeted to project-specific activities.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PC-2</td>
<td>Health Researcher</td>
<td>Usually the most challenging aspect related to patient data collection is longitudinal retention. It is therefore important to have researchers emphasize multi-pronged approaches to retention that focus not only on individual patients but also in those close to them. For example, involving families and close friends will not only assist in retention through multiple points of contact, but might also provide the necessary support and incentive for participants to keep themselves motivated throughout the project. These mechanisms should therefore be described in detail. Finally, as stated under PC-1, it is important that these connections to decrease attrition be based on offering patients something that might be of value to them, establishing a connection based on trust and a sense of fairness in the exchange.</td>
<td>Thank you. We agree, and this is the basis for the standard requiring such details in the description of the research. The text has been revised to include a discussion about the broader values underlying the involvement of patients and other stakeholders as research partners, and it includes a reference to PCORI's Engagement Rubric, which addresses issues of reciprocity and compensation. However, it is important to draw the distinction between patients who serve as stakeholders on research teams (as described in PC-1) and patients who are participants in research studies (as described in PC-2).</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td>The research proposals should include a description of how the researchers worked with populations who are anticipated to be hard to recruit and retain to ensure that the study design and practical aspects of the study were adapted and/or additional support given to ensure that barriers to participation are minimised. (ie not just design it for those patient populations, but work with them)</td>
<td>We agree, and the text has been revised to reflect the intention of the standard.</td>
</tr>
<tr>
<td>PC-3</td>
<td>Health Researcher</td>
<td>While traditional self-reported scales are essential, technologies such as Computer Adaptive Tests ensure not only the measurement precision will be increased among patients in the two extremes of the domain being measured (very high or very low), but will also allow for other features such as a reduction in time to respond a questionnaire, the ability to respond using a mobile phone, the measurement of multiple dimensions through multidimensional CAT, the enhancement of the measurement model over time through progressively increasing items banks, among a number of other advantages associated with this technology and the underlying Item Response Theory modeling, and multiple other characteristics that are fully aligned with the mission of centering research on individual patients and communities. In addition, with the new open source packages such as mirtCAT https://goo.gl/OTxaEN, the time and cost to generate a CAT system is minimum. Another suggestion would be to emphasize that new scales or item banks should be ideally licensed under Open Access Licenses such as https://creativecommons.org/, so that researchers and other stakeholders can freely use that resource.</td>
<td>We appreciate your suggestions and will consider them in developing guidance for applicants and future iterations of the standards.</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td>The context of use (ie why the PRO is considered appropriate for patient population) should also be described. In situations where the PRO is available in several languages, the translation and linguistic validation evidence should be provided.</td>
<td>We have revised the standard to incorporate this suggestion.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PC-4</td>
<td>Health Researcher</td>
<td>While dissemination is of utmost importance, if the results being disseminated are not put to use, then the value of the dissemination is significantly decreased. As such, researchers should probably devise the simplest possible methods to measure the impact of their dissemination efforts. As a rule of thumb, these metrics should be simple and easy, perhaps starting with something as mundane as gathering data on number of Website hits or social network shares a given resource might have reached. The central concept is that without this type of feedback, researchers and patients will know very little on the most effective methods of disseminating information.</td>
<td>We agree that dissemination is important, and PCORI has launched programs to promote and measure the impact of dissemination efforts. One reason for PCORI’s approach is that we realize that researchers themselves are not always in the best position to undertake dissemination efforts on their own (especially given the specialized knowledge and skills required for successful dissemination).</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>PC-4: PCORI has previously identified the necessity of a cultural shift in patient inclusion in the process and engagement for research and dissemination. In addition, PCORI has recognized the importance of disseminating results in a manner which is understandable to each target stakeholder. However, PCORI should consider explicitly requesting lay language summaries for all research it funds to ensure the research produced is actionable to key patient stakeholders. Furthermore, it should encourage research organizations to develop lay language summaries in applications and reports. PCORI releases lay language summaries of all final research reports. We have revised the text to include this.</td>
<td>We agree, and PCORI does require lay language summaries in applications and reports. PCORI releases lay language summaries of all final research reports. We have revised the text to include this.</td>
</tr>
<tr>
<td></td>
<td>Stakeholder - Other</td>
<td>AcademyHealth was perplexed by the addition of the language qualifying study results as “appropriate for dissemination and implementation” and why such a modifier would be necessary. It is unclear when—or why—PCORI would not want to share a study’s findings with appropriate stakeholder audiences. Finally, similar to concerns raised in previous Standards, the framing of newly added standard clause ‘d’ is too restrictive to be of value to improving health and health care. Specifically, study findings should be adopted and distributed beyond merely ‘patient and clinical audiences.’ We would recommend ending the sentence at ‘findings’ or broadening the listed audiences.</td>
<td>We agree that all results should be available; this standard is meant for those situations when study findings merit broader dissemination and implementation efforts. The text has been revised to reflect this. The text has been revised as suggested.</td>
</tr>
<tr>
<td>General feedback</td>
<td></td>
<td>No comments</td>
<td></td>
</tr>
<tr>
<td>IR-1</td>
<td>Stakeholder - Other</td>
<td>AcademyHealth appreciates Standard IR-1 and its attempt to prompt researchers to think through analytic approach issues as well as to define these issues prior to conducting a base analysis. However, we feel that this Standard is missing specified plans for robustness tests. Although PCORI mentions these later in the Standards, specifically when referring to missing data methods, robustness tests are not limited to dealing only with missing data issues. To rectify this omission, PCORI could add a simple sentence, such as, “Researchers should specify their plans for robustness and sensitivity tests in advance of doing these analyses.”</td>
<td>The standard has been revised to reflect this suggestion.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>IR-2</td>
<td>Industry</td>
<td>Given the wording of this standard, it appears to be mainly focused on and applicable to secondary use of data, but it does not state this explicitly. We recommend PCORI considers including language in the standard that it is distinctly about the usage of existing data sources. In addition, we suggest adding a new section/standard describing the best approaches to assure data integrity for primary data collection studies. For example, the standard on data registries outlines the unique considerations for primary data collection. We recommend taking that portion of the Data Registries standard and putting it under the suggested new section in the Standards for Data Integrity and Rigorous Analysis, or suggest a new standard focused on primary data collection, and then referencing that standard within the Data Registry Standard. We have revised the wording in the standard and the text to clarify that that these requirements apply to primary and secondary data. We will add the suggested topics to our list of topics for consideration for future standards and methods work.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stakeholder - Other</td>
<td>PCORI’s Standards should reflect a wide range of data and methodologies, and the language used in IR-2 very much implies that all data are quantitative, when qualitative data are equally and often of even more importance. Investigators should specify how their analyses will incorporate and allow for the inclusion of qualitative data or mixed methods, incorporating both qualitative and quantitative data. PCORI appreciates this comment and has undertaken an effort to develop standards on qualitative and mixed methods. These will be added in future revisions of the standards.</td>
<td>The text has been revised.</td>
</tr>
<tr>
<td>IR-3</td>
<td>Stakeholder - Other</td>
<td>When referring to data linkage plans, it’s truly the combination of data sources that matters. To this point, in bullet one, where PCORI says “each data source,” AcademyHealth would recommend instead altering the language to reflect the utility and fitness of the linked dataset as a whole, such as focusing on “the appropriateness and limitations of the data linkage plan,” or language to this extent.</td>
<td></td>
</tr>
</tbody>
</table>
IR-5 | Industry | We applaud the Committee on clarifying how patients and stakeholders should be involved in the prioritization of research, conduct of research, and the dissemination of research findings. As outlined in the standards, a broad set of stakeholders, including the biopharmaceutical industry, contribute to a more robust research process. Purchasers, payers, and industry communities seek to ensure that relevant questions are addressed, research findings are usable, and results are translated and implemented in practice. This engagement is an important aspect towards improving the relevance of CER questions and ultimately the impact of CER on health care decision-making.

Standards for Data Integrity and Rigorous Analysis:
We commend the Committee on the recognition of the growing body of research standards and the need to increase research plan and analytic transparency. These are important steps forward. However, we believe there are other opportunities for the PCORI Methodology Committee to play a pivotal role in the nation's research enterprise.

We commend the broader recognition of standards such as STROBE (for observational research) and SRQR and COREQ (for qualitative research). As outlined in the Affordable Care Act, the methodology standards “shall build on existing work on methodological standards for defined categories of health interventions and for each of the major categories of comparative clinical effectiveness research methods.” Good practices identified by professional societies and consortia such as RECORD (for observational studies), the GRACE Checklist (for observational, the CER Collaborative (for observational studies, indirect treatment comparisons, and modeling studies), CENT (for N-of-1 trials), CONSORT Extension for pragmatic trials, and others are not referenced in this version of standards. Because stakeholders are increasingly looking to PCORI as a leader in the establishment of standards for CER, broader inclusion and recognition of good research practices is needed.

Recommendation: We recommend that additional methods or standards developed by other groups be considered and at a minimum referenced to increase stakeholder awareness or adopted in the PCORI methods.

Over the past decade, standards for research have proliferated among different research disciplines (e.g., biostatistics, pharmacovigilance, econometrics). This proliferation can increase the reach of standards across the types of research. However, it can also have unintended consequences. For example, a recent study compared and contrasted nine existing sets of standards or guidelines (based on 23 elements) for conducting observational studies. While most guidelines standards agreed on what elements were important (e.g., the need for a study protocol), there was disagreement 52% of the time on how the standards should be acted upon and addressed. This disagreement can contribute to variation in study quality, create discrepancies adopted into care decisions. There is a need to identify common and agreed upon methods for research through consensus-based approaches. An ongoing process enables agreement where quicker consensus is feasible and an iterative process for new, novel, or controversial methods.

Recommendation: Stakeholders perceive PCORI to be a leader in establishing CER standards. Few other organizations have the access to research experts from a variety of research disciplines and communities or experience in facilitating multi-stakeholder processes for prioritization as PCORI. We commend the Committee on the advancement of the standards. We believe the Committee and PCORI can offer their leadership to advance a set of common and agreed upon methods through a consensus-based process that will form the foundation for research that the public can use and trust.

Finally, we commend the Methodology Committee on the recognition of the importance of research transparency. Without insight into which outcomes were pre-specified and the research analysis process used, the validity of study results may be questioned. The efforts to register studies before study start at clinicaltrials.gov and other sites seek to increase research transparency.

Recommendation: Some sites such as clinicaltrials.gov were developed for clinical trials. Although used for observational studies as well, many modifications are needed to for these sites to account for features.

APPENDIX B: RESPONSE TO PUBLIC COMMENT
<table>
<thead>
<tr>
<th>Standard</th>
<th>Stakeholder Group</th>
<th>Comment (as submitted to PCORI)</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR-5</td>
<td>Stakeholder - Other</td>
<td>There appears to be a discrepancy between Standard IR-5 and other PCORI guidance on reporting guidelines. For example, in much of PCORI's dissemination and communication work, including in its 2015 document, "PCORI's Process for Peer Review of Primary Research and Public Release of Research Findings," PCORI includes mention of both the Registry of Patient Registries (RoPR) as a repository in which "[p]atient registries must be registered" and Health Services Research Projects in Progress (HSRProj) as the database which researchers should use to register "[m]ethodological projects and others that are not appropriate for ClinicalTrials.gov or RoPR." Yet, RoPR and HSRProj are absent from the Methodology Standards entirely. For consistency with earlier guidance PCORI should account for these sites within the Methodology Standards as well. Furthermore, given that HSRProj houses the largest collection of patient-centered outcomes research projects, AcademyHealth recommends that HSRProj be included as a primary source for observational outcomes studies. Moreover, for easy reference and convenience for users, PCORI may wish to consider providing the URLs to the websites mentioned in this Standard.</td>
<td>We have added a citation to the EQUATOR Network, as this contains links to the guidelines listed as examples as well as others not mentioned in the standards or text. RoPR is cited in the section on Standards for Data Registries, and PCORI currently registers all funded research projects in HSRProj.</td>
</tr>
<tr>
<td>IR-6</td>
<td>Stakeholder - Other</td>
<td>First, as written, IR-6 assumes that 'evaluation staff' do not write up the results, but this is often the case and should be addressed. Additionally, for clarification purposes within this Standard, AcademyHealth recommends that PCORI change "evaluation staff" to "data collection staff."</td>
<td>We have revised the standard to reflect that all research staff should be masked when feasible.</td>
</tr>
</tbody>
</table>
| General Feedback | Industry | • At a minimum, distinctions should be made between primary and secondary data sources as well as prospective and retrospective observational research within these standards.
• In general, there appears to be gaps in the consideration of the unique properties of retrospective database analysis. We recommend reviewing the document A Checklist for Retrospective Database Studies--Report of the ISPOR Task Force on Retrospective Databases to gain further insight on some of the issues and adjust the standards as appropriate. The checklist can be found at: www.ispor.org/workpaper/healthscience/finalreportretror.pdf | We made the standards general and have focused on a selected number of topics at this time. We will be adding to the standards in the future and will consider adding more standards that apply to specific study designs. |
<p>| General Feedback | Stakeholder - Other | AcademyHealth would like to reiterate from our past comments that research projects funded by PCORI should reflect a wide range of data and methodologies – both traditional and innovative – that support robust, practical, and timely evidence generation. This set of standards could be improved upon by including a preamble stating that PCORI is referring to all kinds of data from all kinds of methods, especially including those of qualitative and mixed methods research, but is also utilizing new thinking in causal methods, including step-wedge and factorial designs and interrupted time series and regression discontinuity statistical approaches. | We have revised the text in the rationale for this group of standards to include these ideas. |</p>
<table>
<thead>
<tr>
<th>Standard</th>
<th>Stakeholder Group</th>
<th>Comment (as submitted to PCORI)</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-2</td>
<td>Industry</td>
<td>Why the mention of “valid” confidence intervals? What would constitute an invalid CI? Also, should we be “discouraging” the use of single imputation methods as the primary approach to handling missing data? Sometimes such methods are indeed preferred. (EBort)</td>
<td>The confidence intervals are valid if the imputed data meet the distributional assumptions and may not be valid if these assumptions are violated. While single imputation methods may be justified or even necessary in specific cases, they are not preferred, based on the current state of the methodological science.</td>
</tr>
<tr>
<td>Stakeholder - Other</td>
<td>Along with the addition of “mean value imputation” as one of the examples of handling missing data, AcademyHealth also recommends including ‘hot deck imputation,’ in which each missing value is replaced with an observed response from a “similar” unit. For additional clarification within this standard, PCORI should consider distinguishing between imputation of outcomes versus control variables. Finally, and more generally, we encourage PCORI to push the research community to understand and report the underlying processes of data generation. The application of missing data techniques draws from a solid understanding of these underlying processes, so that the methods employed align with the mechanisms by which the data are missing.</td>
<td>The list of recommended statistical techniques is not intended as exhaustive, but statistical inference procedures that account for statistical uncertainty due to missingness are preferred. The text has been revised to mention the importance of understanding how data were generated.</td>
<td></td>
</tr>
<tr>
<td>MD-3</td>
<td>Stakeholder - Other</td>
<td>AcademyHealth encourages PCORI to make its Methodology Standards as clear as possible, so they are of greatest benefit to the researcher. PCORI's request that missing data due to other mechanisms be “well documented and handled appropriately” is exceedingly vague and may not elicit the response PCORI seeks. What does PCORI consider well documented? Handled appropriately? This Standard would be enhanced with additional clarification surrounding these points, or removal of qualifiers to simply require documentation of the reasons for missingness. As a final point, we would reiterate the point made on Standard MD-2, that pushing the research community to understand and report the underlying processes of data generation is more important than focusing on making definitive statements about the processes used in the analysis, which depend on this external content.</td>
<td>The qualifiers have been removed. The text has been revised to mention the importance of understanding how data were generated.</td>
</tr>
<tr>
<td>General comments</td>
<td>Industry</td>
<td>• We recommend adding additional language in these standards regarding data from secondary (claims, EMR) databases. Suggested text: In some cases, there is so much missing data that it may be better to search for another database that is more complete. • In addition, it would be beneficial if the standards contained citations for: -Little RJ et al. The Prevention and Treatment of Missing Data in Clinical Trials. N Engl J Med 2012; 367; 14 1355-1360. -National Research Council. The prevention and treatment of missing data in clinical trials. Washington, DC: National Academies Press, 2010.</td>
<td>The text has been revised to reflect that these standards apply to electronic health records (EHRs). The Standards for Data Networks as Research-Facilitating Structures discuss ensuring that data are of sufficient quality for a particular research question. PCORI is also undertaking efforts to develop standards that focus on data quality in EHRs. The citations have been added.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HT-2</td>
<td>Stakeholder - Other</td>
<td>AcademyHealth first recommends addressing the topic of type II errors, which is absent from the Methodology Standards altogether. To this point, researchers who focus on or care about type II errors, might not consider p-value adjustment a credible approach.</td>
<td>The text has been revised to discuss both Type I and Type II error as well as other concerns that heterogeneity of treatment effects (HTE) analyses should take into account.</td>
</tr>
<tr>
<td>HT-3</td>
<td>Health Researcher</td>
<td>I think it is an “overkill” to require reporting of statistical power for all analyses. This should only be required for hypothesis-driven analyses.</td>
<td>The standard has been revised.</td>
</tr>
<tr>
<td>Industry</td>
<td>Health Researcher</td>
<td>The last sentence reads that “statistical power for all analyses should be reported.” This is true if it is a test of hypothesis, but it does not apply if the purpose of the exercise is estimation of effects. (EBort)</td>
<td>The standard has been revised.</td>
</tr>
<tr>
<td>General feedback</td>
<td>Health Researcher</td>
<td>These standards do not cover “predictive” HTE or individualized treatment-effect estimation using complex machine learning models. I think this is an emerging area of great interest and standards might be required to ensure that the predictive learning is done according to rigorous principles.</td>
<td>Thank you for this suggestion. We will add it to the list of potential future topics. The text has been changed to clarify that these standards do not cover this topic.</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td>In general, the standards for HTEs would benefit from listing a few examples of variables that could be considered, such as gender, age, co-morbidity, lifestyle attributes, race, ethnicity, and/or regional factors. In addition, the standard should state that it is important to include disease state-specific variables.</td>
<td>The examples in the text have been expanded.</td>
</tr>
<tr>
<td>DR-1</td>
<td>Stakeholder - Other</td>
<td>First, in order to make a distinction between engagement in designing the registry infrastructure and specific studies, AcademyHealth would recommend modifying the second sentence of the “Registry Purpose and Protocol” language slightly to read, “Participants and other key stakeholders should be engaged in registry design and study protocol development.” Furthermore, we recommend adjusting the language in first sentence of the “Data Safety and Security” section as follows: “Registry custodians should comply with IRB requirements, the HIPPA Privacy Rule, and all other applicable state and federal laws.” Finally, unless further classification is given to the “Systematic Participant Recruitment and Enrollment” section on which sampling plans could be categorized as “otherwise,” we would recommend simply dropping the phrase “(population-based or otherwise)” from the first sentence.</td>
<td>The standard has been revised to incorporate these suggestions.</td>
</tr>
<tr>
<td>Standard feedback</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>General feedback</td>
<td>Industry</td>
<td>•The current and proposed standards for data registries appear to be primarily focused on good practices for designing new data registries. However, there are three uses of data registries for PCOR studies that call for somewhat different quality considerations and standards: (1) Observational PCOR studies for which a registry is being newly designed to provide data. (2) Observational PCOR studies which propose to use data elements from an existing ongoing registry to address a research question. (3) Observational PCOR studies which propose to modify an existing ongoing registry to address a research question. The elegance and strength of a patient registry is its ability to answer many questions that are often not known or thought to be needed at the inception of the registry. PCORI should augment existing standards or create new standards in this section to detail how registries can and should support “new research and research questions” that were unknown when the registry was first designed. Specific issues for consideration may be: advisory board review and approval, protocol and data collection modifications, confirmation of appropriate participant consent for the new questions, etc. We recommend that PCORI consider including standards in the report that account for the types of registries listed above and address related quality requirements for each. •When using an existing registry, the standard should require a feasibility assessment of a proposed registry based on its history of operation (taking into account potential sponsor or clinician biases) and quality to date.</td>
<td>DR-3 addresses adapting existing registries and has been revised to include the need to assess feasibility. We will add these suggestions to the list of topics for future consideration.</td>
</tr>
<tr>
<td>Stakeholder - Other</td>
<td>AcademyHealth recommends that PCORI encourage both existing registries and those in development to submit a registry profile to AHRQ's Registry of Patient Registries (RoPR) to promote collaboration and encourage transparency among registry developers and users. This also represents another inconsistency with PCORI's former guidance to researchers on registering studies; PCORI's dissemination and communication guidance suggests that investigators working with registries should report to RoPR, but this registry isn't referenced within the Methodology Standards.</td>
<td>The text has been revised to incorporate this recommendation.</td>
<td></td>
</tr>
<tr>
<td>DN-1</td>
<td>Industry</td>
<td>Question: Do you think that under (G.) Common data Model that this is an acceptable definition of a CDM? It seems correct, but not very well constructed. (I don't have a specific alternative to offer on this one. Please look at and decide.) (EBort)</td>
<td>We have revised the definition to make it clearer and to use more accessible language.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| DN-1 (continued) | Industry | • DN-1: A. The Data Integration Strategy: The standards do not specifically address considerations about assessment of the validity of the data sources, which should be integrated to a data network. For example, a data source might be technically feasible to be part of a network, but the data quality/integrity might not be sufficient to avoid compromising results when that data might be used in conjunction with data from the other sources of the data network. Therefore, we recommend PCORI adds some language about a data quality/integrity assessment prior to integration (e.g. completeness of data, data quality assurance measures implemented by the source) to this area of the standard.
• In addition, we recommend an additional characteristic under DN-1 emphasizing that the foundation of any data integration strategy is a clear description of the equivalence assessment of the data items. There should be documentation, which assesses the reason why a data item is judged to be equivalent to the same data item in another data source and any limitations to that equivalence. Suggested language DN-1: Data Quality and Equivalence Evaluation: In order to assure a robust foundation of the data network, the data equivalence evaluation for all involved data sources against each other should be documented and any limitations should be clearly outlined. Data Quality assurance measures of the data sources should be assessed and documented. Any limitations imposed on the Data Network due to quality limitations of single data sources should be evaluated and documented.
• DN-1: B. Risk Assessment Strategy: This standard should be expanded, or a new one should be added, to help researchers consider and address the physical security of the data and data platforms used to access and utilize data from data networks.
• DN-1: B. Risk Assessment Strategy: In addition to the risk of re-identification concerns covered in this part of the standard, additional privacy concerns could be addressed. Suggested language: Data custodians should assure that data privacy/consents of the original data source cover the intended usage of the data through the data network. | We agree. DN-1, DN-2, and the text have been revised to address these points. |
| Stakeholder - Other | With respect to this Standard, AcademyHealth would recommend that PCORI make a few modest changes and address the following points that are in need of clarification:
Within the “Data Integration Strategy” bullet, in clause 2, PCORI’s request for researchers to “make transformation logic” available is not so easily done. Often, it involves individuals needing both the code to transform the data as well as significant process documentation to define mapping strategies. Although this isn’t a simple process, a note from PCORI within this Standard to specify what it means by ‘logic’ could be helpful for researchers undertaking this process.
Next, we would ask PCORI for additional illumination on the following bullet regarding “Risk Assessment Strategy.” AcademyHealth assumes the greatest issue on this point is the handling risk of personal health information being released. However, in such a case, these issues are addressed in a data use agreement (DUA). Barring the DUA case, what is PCORI’s threshold for a ‘policy?’ If PCORI is merely specifying that a DUA should be in place, and that it includes the aforementioned issues, we recommend that PCORI be precise in the Standard | The language has been revised to add more detail on what the transformation logic includes.
We have added language in the text to provide examples and to clarify that researchers should specify what is used. |
<table>
<thead>
<tr>
<th>Standard</th>
<th>Stakeholder Group</th>
<th>Comment (as submitted to PCORI)</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>General feedback</td>
<td>Industry</td>
<td>As a formatting note, this standard along with Standards 3, 4, and 6 contain information and best practices for how to manage data prior to analysis and ensuring data integrity. Although it is beneficial to introduce concepts of data quality and data integrity for both management and analysis (and these are certainly related), consider having one complete standard for addressing all aspects of handling data prior to analysis.</td>
<td>Thank you for the suggestion. This issue has been added to plans for the next revisions to the standards.</td>
</tr>
<tr>
<td>CI-1</td>
<td>Health Researcher</td>
<td>How about asking the researchers to <code>define the causal estimand?</code> This is the most fundamental step in causal inference.</td>
<td>Thank you for the suggestion. We consider defining the causal estimand to be included as part of the requirement to determine “whether the study can handle bias and confounding and the extent to which valid estimates of the effects of an intervention can be generated given the particular hypothesis, study design, analytical methods, and data source(s).” We will consider expanding the standard in the future to include more specific technical requirements.</td>
</tr>
<tr>
<td></td>
<td>Health Researcher</td>
<td>This is a nice addition. A simple model should help investigators think clearly about causation and potential confounding, and then select an appropriate causal inference strategy.</td>
<td>Thank you.</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>Agreed, important step</td>
<td>Thank you.</td>
</tr>
<tr>
<td>CI-2</td>
<td>Industry</td>
<td>Add to the end something like “Researchers should determine whether and how the study can handle selection bias and the extent to which valid estimates of the effects of an intervention can be generated based on the final analysis population.”</td>
<td>The standard has been revised to incorporate this suggestion.</td>
</tr>
<tr>
<td></td>
<td>Stakeholder - Other</td>
<td>Since the Methodology Standards revolve around patient-centered studies, the first sentence of CI-2 reads as peculiar. AcademyHealth assumes PCORI is referring to decisions about including ‘specific patients,’ concerning their inclusion or exclusion in studies, but PCORI may wish to stipulate its meaning more plainly.</td>
<td>The standard has been revised to clarify the intent.</td>
</tr>
<tr>
<td>CI-5</td>
<td>Industry</td>
<td>Also researchers need to consider how the PS will be implemented (e.g., matching, weighting), what is the desired approach and its implications on inference. Further, after PS analysis, what is the potential for unmeasured/residual confounding?</td>
<td>The standard has been revised to incorporate this suggestion.</td>
</tr>
<tr>
<td>CI-6</td>
<td>Health Researcher</td>
<td>This has improved as well. Reporting the balance of covariates between groups created by the IV is a nice way to test assumption 2. You may want to consider suggesting falsification testing as a means to evaluate assumption 3.</td>
<td>The text has been revised to emphasize the importance of identifying and appropriately assessing underlying assumptions.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CI-6 (continued)</td>
<td>Industry</td>
<td>The revised version adds the phrase “unmeasured confounding” when referring to the instrumental variable analysis. This is potentially confusing for several reasons. First, the three assumptions that follow apply regardless of whether the IV approach is used for “unmeasured confounding” or used simply as an analysis tool without specifically targeting unmeasured confounding. Second, as this is the only mention of a method for unmeasured confounding within the standards, it can appear as an endorsement of this approach. The need for sensitivity analysis for unmeasured confounding is clear and should be emphasized more, though the specific method that is best will depend on study-specific factors (Schneeweiss S. Pharmacoepidemiology and drug safety 2006). In addition, several new advances have appeared in the recent literature allowing quantitative assessments of the potential impact of unmeasured confounding (Faries D et al. Value in health 2013; Ryan P et al. Statistics in medicine 2012; Yu et al. Pharmacoepidemiology and drug safety 2012). These references should be considered for inclusion within this standard.</td>
<td>Thank you. We have revised the standard and the text to clarify these points. We agree that other approaches may be valid and useful.</td>
</tr>
<tr>
<td>Health Researcher</td>
<td>Industry</td>
<td>The standards do not address generalizability or “transportability” of findings. A separate standard may be needed.</td>
<td>We will consider this topic for future additions and expansion of the standards.</td>
</tr>
<tr>
<td>General feedback</td>
<td>Industry</td>
<td>General feedback: time-varying exposures and confounders are mentioned but there's no discussion on analytic techniques to study/account for these.</td>
<td>Discussing specific analytical techniques is beyond the scope of the standards; it may be the subject of methods research and/or training materials in the future.</td>
</tr>
<tr>
<td>Health Researcher</td>
<td>Industry</td>
<td>Good to address these issues. I’m puzzled by CI-6: “(i.e., how the assumptions are met).” We can never know. So I suggest: “(i.e., support for assumptions)” Similarly: “describing how the variable chosen as an IV satisfies the three key properties” --> “describing to what extent the variable chosen as an IV satisfies the three key properties”</td>
<td>We have revised the standard in line with these suggestions.</td>
</tr>
<tr>
<td>Stakeholder - Other</td>
<td>Industry</td>
<td>AcademyHealth applauds PCORI’s efforts to cover a wide range of methodologies. However, after reviewing the Standards—and Standard 8 in particular—one is left with the false impression that methods employing instrumental variables and propensity scores are the primary observational data methods. AcademyHealth recommends that PCORI describe other methods such as difference-in-differences, regression discontinuity, factorial experiments and partial factorial experiments, interrupted time series, and sample selection models to give the reader a flavor for the variety of methods that are now available and are likely to be expanded in the future.</td>
<td>The text has been revised to clarify that other approaches may be appropriate and should be considered, depending on the research question of interest and the data source(s) to be utilized.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AT-2</td>
<td>Stakeholder - Other</td>
<td>AcademyHealth commends PCORI's Standard AT-2 on the Bayesian trial structure, namely the request that researchers provide specific details about how the prior distribution was determined and if an informative or non-informative prior was chosen. To further improve this Standard, however, AcademyHealth would recommend a few minor changes: First, in the sentence regarding computational issues, we recommend changing “be addressed as well” to “specified” to make PCORI's request more explicit. Furthermore, since the items that follow this sentence (e.g., software used for Bayesian calculations during trial design and trial execution) are very specific, appropriate requirements, PCORI should consider enumerating them clearly as a bulleted list of documentation requirements. This would also provide an additional sense of consistency with other reporting requirements included in the Methodology Standards.</td>
<td>We have revised the standard to make the request more explicit.</td>
</tr>
<tr>
<td>AT-4</td>
<td>Stakeholder - Other</td>
<td>In bullet three, AcademyHealth recommends that PCORI add “or adverse outcomes” after the full “interim stopping” clause.</td>
<td>The standard has been revised.</td>
</tr>
<tr>
<td>General feedback</td>
<td>Industry</td>
<td>These standards raise awareness of adaptive designs; however it is not clear why non-adaptive Bayesian designs seem to be removed from this section. We suggest PCORI includes additional language which commends providing convergence information and assessments of sensitivity of priors (prior-to-posterior).</td>
<td>The focus of this section is on adaptive designs. Bayesian approaches are mentioned to highlight how they can be used in adaptive designs. Other uses of Bayesian designs may be added in future versions of the standards.</td>
</tr>
<tr>
<td>DT-1</td>
<td>Industry</td>
<td>The standard should differentiate between objective diagnostic and screening lab tests for biomarkers versus subjective assessment tools where an objective biomarker is not available for patient-reported outcomes (e.g. measurements of pain, depression, or anxiety).</td>
<td>This set of standards has been revised to clarify that these standards apply to any tests used to inform medical decision making.</td>
</tr>
<tr>
<td>DT-2</td>
<td>Industry</td>
<td>Most studies of diagnostic tests evaluate only their accuracy, but further evidence is needed to determine a test’s true clinical value. Establishing benefit to patient health must be the priority for diagnostic evaluations. Test accuracy is one component of test evaluation, but does not capture the impact of tests on patients (Ruffano et al: Assessing the value of diagnostic tests: a framework for designing and evaluating trials. BMJ 2012). Therefore, PCORI should consider other components of test evaluation which are important to patients and consider including these aspects in revised standards. In addition, we recommend that PCORI consider discussing the significance of understanding the sensitivity and specificity of diagnostic tests and the importance of having this information readily available for medical personnel and patients alike.</td>
<td>These ideas and the reference have been incorporated into the revised standards and text.</td>
</tr>
<tr>
<td>Industry</td>
<td>Why are randomized controlled trials “preferred”? Many patient-centered outcomes cannot be realistically addressed with randomized designs, and this section pushes the old logic that “when possible, always do a trial”. For a document devoted to RWE and patient-centeredness, I don't think that this is the proper default position. (EBort)</td>
<td>The standard does allow for other designs, but it seeks to encourage consideration of randomized controlled trials for the purpose of examining the clinical effects of alternative approaches to the use of medical tests.</td>
<td></td>
</tr>
<tr>
<td>General feedback</td>
<td>Industry</td>
<td>There have been a considerable amount of changes in the area of diagnostic tests since the last release of standards. Therefore, it critical that the new standards reflect this and clarify minimal expectations for researchers.</td>
<td>Updating the standards is part of the ongoing work of the Methodology Committee, and we welcome specific suggestions for future revisions.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>RC-1</td>
<td>Stakeholder - Other</td>
<td>As a whole Standard 12, and in particular RC-1 and RC-2, is restrictive in its binary classification of the cluster and individual level of study objectives, interventions, and primary outcomes. This hierarchical manner of thinking is restrictive for research designs.</td>
<td>The standards reflect the current literature on cluster designs, which focuses on binary classification. The standards may be expanded in the future.</td>
</tr>
<tr>
<td>RC-3</td>
<td>Industry</td>
<td>We applaud the addition of standards for research designs using clusters, but do suggest some supplementary language to the proposed standard. Suggested language: Consider simulation methodology to examine power under scenarios that reflect conditions that are not pre-specified, such as varying sample sizes within clusters if such sample sizes are not pre-specified.</td>
<td>Thank you. We have added to the text, providing the rationale and description for this standard.</td>
</tr>
<tr>
<td>RC-5</td>
<td>Health Researcher</td>
<td>I agree with the principle of achieving balance when CRT's are "small" (number of clusters). However, I disagree with the focus on stratification as the only solution. It may work for moderately-sized trials, but in very small CRT's, stratification may not be feasible. Alternatives such as restricted randomization may be highlighted as an alternative approach (Hayes and Moulton: Cluster Randomized Trials, 2009, p. 86-103).</td>
<td>We have revised the standard to clarify that stratification is recommended when feasible.</td>
</tr>
<tr>
<td></td>
<td>Stakeholder - Other</td>
<td>The PCORI Methodology Standards overall and Standard 12 (in particular Standard RC-5), would be strengthened by mentioning the importance of assessing and documenting context (which may change over time) in evaluating and comparing interventions, including the internal and external contexts. Research may be improved upon by documenting and learning from heterogeneity of results rather than simply seeking to adjust away such variation. Furthermore, measurement of implementation factors, such as fidelity, adaptation, implementation procedures, and deviations from the planned approach, is critical in order to learn what works best for whom and in what context. Attention should be paid to how the investigator will explore the potential reasons surrounding why a seemingly good intervention fails (should that be the finding) or why some programs sites are more successful than others. Researchers should describe their approach to gathering this information—both quantitative and qualitative—on implementation and how they will integrate it with their analysis of program effects. This is also an area where qualitative and mixed methods approaches are critical to understanding the implications and sustainability of program effects.</td>
<td>We have added this idea to the text. PCORI will include methodology standards on complex interventions in its next set of revisions to the current standards. Those new standards will address issues related to fidelity and adaptation of interventions.</td>
</tr>
<tr>
<td>General feedback</td>
<td>Stakeholder - Other</td>
<td>AcademyHealth appreciates the addition of this new Standard, which will be increasingly important as the use of cluster design increases. This Standard is unique in that it's limited to a design-specific set of standards, while the others are somewhat design agnostic. Nevertheless, while we agree these Standards are important to include, Standard 12 includes information at a comparatively granular level. Furthermore, and notably, AcademyHealth implores PCORI to remember that cluster design is just one approach being used in the growing number of comparative studies of complex interventions. We urge PCORI to include other designs for evaluating complex interventions—including designs from implementation science—in a future iteration of the Methodology Standards.</td>
<td>We agree and do plan to continue to add standards for additional designs in the future.</td>
</tr>
<tr>
<td>Standard</td>
<td>Stakeholder Group</td>
<td>Comment (as submitted to PCORI)</td>
<td>Disposition</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>General feedback (continued)</td>
<td>Media</td>
<td>God, I feel like I should be taking notes! Great work</td>
<td>Thank you.</td>
</tr>
<tr>
<td></td>
<td>Hospitals and Health Systems</td>
<td>I would like to see methodology standards for qualitative research. Stakeholder engagement often uses qualitative methods, and given the fact that engagement is required in all projects, most PCORI applicants will propose to use them.</td>
<td>Thank you. We agree that this would be a helpful area for future work. We plan to continue to add to the recommendations, including standards on qualitative and mixed methods.</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>Actionable and Measurable Standards: The current version of the PCORI Methodology Standards identifies a minimum set of practices for conducting comparative effectiveness research (CER). However, it can be difficult if some standards are not “actionable” or “measurable”. For example, IR-5 specifies that researchers “provide sufficient information in reports to allow for assessments of the study’s internal and external validity”, but the criteria for “sufficient” remains in the eye of the researcher and the reader. In contrast, MD-2, which addresses statistical methods for dealing with missing data, outlines which methods are considered valid and which methods are discouraged. Actionable and measurable standards provide a target for decision-makers to judge the usability of the evidence produced and for researchers to aim. Recommendation: We recommend the Methodology Committee engage in a review of the current methods standards to outline the criteria required to meet each standard. For standards in which there are not clear requirements, examples of ways in which the standards would be fulfilled would benefit all stakeholders.</td>
<td>Thank you for your comment. We are working to do this through a variety of approaches. As we expand and revise the standards, we will continue to make them more precise when there is evidence or agreement in the field. In instances in which that is not yet the case, we have been developing examples for use in training materials that we make available to the public. We hope these efforts will address your concerns.</td>
</tr>
</tbody>
</table>
The new proposed Methodology Standards continue to prove a valuable contribution to the field of health services research and to researchers wrestling with how to conduct high quality and relevant patient-centered outcomes research (PCOR). AcademyHealth appreciates the Methodology Committee’s updating of these Standards to guide the field at a time of many changes in the research enterprise.

PCOR—like all health services research—has great potential to improve health, but only when it focuses on relevant questions, is produced rigorously, and is disseminated and used widely, rapidly, and by patients, caregivers, and other stakeholders. It is essential that the best scientific practices be applied in order to generate trustworthy evidence. The proposed revisions to the Methodology Standards are useful, but reflect a paradigm that is unduly limited to research on discrete clinical services and interactions. Given that PCOR’s established priorities include assessing systems and eliminating disparities, PCOR needs to consider broadening the paradigm under which the standards are developed. Below are some general thoughts on how AcademyHealth feels the Standards could be improved upon:

The Methodology Report would be improved by discussing in more detail the opportunities and rigor of delivery system science, also known as improvement, implementation, or health care delivery science and of embedded research considerations as well as of methodologies beyond traditional trial methodologies (including statistical process control, step-wedge and factorial designs, and new efforts to understand rapid-cycle evaluation, such as the CMS Innovation Center has been using).

Additionally, as echoed within many comments throughout the various Standards, AcademyHealth would like to reiterate that research should reflect a wide range of data and methodologies – both traditional and innovative – that support robust, practical, and timely evidence generation. As our previous recommendations state, the Methodology Standards, which are important and complex, could be improved not only by including a descriptive paragraph per category of Standards, but also by reminding researchers that the data and methods to which it is referring are both qualitative and quantitative in nature.

Thank you for your comments. The PCORI Methodology Standards apply directly to comparative clinical effectiveness research and are not intended to be broad guidance on all aspects of health services research. The standards will continue to be expanded and updated, but it is expected that there always will be some specific research approaches that are not directly addressed by the standards. PCORI encourages researchers to use all credible sources of guidance that may complement its methodology standards.
APPENDIX C: TRANSLATION FRAMEWORK
APPENDIX D: REFERENCES

Molnar, F. J., Man-Son-Hing, M., Hutton, B., Fergusson, D. A. 2009. Have last-observation-carried-forward analyses caused us to favour more toxic dementia therapies over less toxic alternatives? A systematic review. Open Medicine, 3(2), e31-e50.

The HIV-CAUSAL Collaboration (2011). When to initiate combined antiretroviral therapy to reduce mortality and AIDS-
defining illness in HIV-infected persons in developed countries: An observational study. Annals of Internal Medicine, 154(8), 509–515.

APPENDIX E: CONTRIBUTORS

METHODOLOGY REPORT (2017)

Editors
David Hickam, Emily Evans, Annette Totten, Steven Goodman, and Robin Newhouse

Acknowledgments
This revision of the PCORI Methodology Report reflects the insights and efforts of many people. The editors and the Methodology Committee wish to thank these individuals, as well as the PCORI Board of Governors for its support of the development of the updated methodology standards and this revised report.

Many PCORI staff served as key members of the topic-focused workgroups that reviewed and revised the original standards and accompanying text in the report. These include Allison Ambrosio, Lauren Azar, Geeta Bhat, Kristin Carman, Fatou Ceesay, Yen-Pin Chiang, Sarah Daugherty, Laura Forsythe, Lori Frank, Bridget Gaglio, Cathy Gurgol, Andrea Heckert, Stanley Ip, Layla Lavasani, William Lawrence, Mary Kay Margolis, Julie McCormack, Katherine McQueston, Jessica McCreary, Jessica McCreary, Danielle Whicher, and Maryan Zirkle.

The following former members of the Methodology Committee helped us update the standards and revise the report: Robert Kaplan, Sebastian Schneeweiss, Mary Tinetti, and Clyde Yancy.

The updated standards and revised report also benefited from key contributions of external experts, including Allan Donner, Michael Kahn, Ken Kleinman, Thomas Koepsell, and David Murray.

Staff from PCORI's Communications department were instrumental in supporting the public comment process and the design and production of the report, including Marla Bolotsky, Julie Miller, William Silberg, and Blake Whitney.

METHODOLOGY STORIES AND EXAMPLES (2013)

This part of the Methodology Report is unchanged from the original content published in 2013. The contributors to this content are listed below.

Editorial Team
Writers/Editors: Ayodola Anise, Eric Jonson, Zachary Mesiel, Edwin Reid, Lauren Saxton
Designer of Review Materials: Lauren Saxton
Chief Editor for Stories: Mark Helfand

Acknowledgements
We would like to recognize the individuals who supported the development of the stories and examples, including Josh Carlson, Michael Demers, Jacqueline Fridge, Eric Hess, Annie LeBlanc, Michel LeBlanc, Courtney Schreiber, Lucinda Shore, Leigh Simmons, Beryl, Juli, Steve, and Suzanne. Kay Dickersin provided assistance in identifying sources for stories. We also thank the patients, researchers, and members of the PCORI Methodology Committee and Board of Governors who reviewed earlier drafts of the stories.

Additionally, we thank the following organizations for their contributions to the stories and examples:

• Healthwise (informedhealthdecisions.org) for Patient Voices: Juli

• The DIPEx Charity (healthtalk.org) for Patient Voices: Sarah (This example is based on research led by the Health Experiences Research Group, Department of Primary Care Health Sciences, University of Oxford.)